
EFFECTIVE MEASUREMENTS FOR STRUCTURAL DYNAMICS TESTING 

Part I 

By Kenneth A. Ramsey 

Digital Fourier analyzers have opened a new era in structural dynamics testing. The ability 
of these systems to quickly and accurately measure a set of structural frequency response 
functions and then operate on them to extract modal parameters is having a significant 
impact on the product design and development cycle. Part I of this article is intended to 
introduce the structural dynamic model and the representation parameters in the Laplace 
domain. The concluding section explains the theory for measuring structural transfer 
functions with a digital analyzer. Part II will be directed at presenting various practical 
techniques for measuring these functions with sinusoidal, transient and random excitation. 
New advances in random excitation will be presented and digital techniques for separating 
closely coupled modes via increased frequency resolution will be introduced.  

Structural Dynamics and Modal Analysis  

Understanding the dynamic behavior of structures and structural components is becoming 
an increasingly important part of the design process for any mechanical system. Economic 
and environmental considerations have advanced to the state where overdesign and less 
than optimum performance and reliability are not readily tolerated. Customers are 
demanding products that cost less, last longer, are less expensive to operate, while at the 
same time they must carry more payload, run quieter, vibrate less, and fail less frequently. 
These demands for improved product performance have caused many industries to turn to 
advanced structural dynamics testing technology. 

The use of experimental structural dynamics as an integral part of the product development 
cycle has varied widely in different industries. Aerospace programs were among the first to 
apply these techniques for predicting the dynamic performance of flight vehicles. This type 
of effort was essential because of the weight, safety, and performal1ce constraints inherent 
in aerospace vehicles. Recently, increased consumer demand for fuel economy, reliability, 
and superior vehicle ride and handling qualities have been instrumental in making structural 
dynamics testing an integral part of the automotive design cycle. An excellent example was 
reported in the cover story article on the new. Cadillac Seville from Automotive Industries, 
April 15, 1975. 

"The most radical use of computer technology which 'will revolutionize the industry' . . . is 
dynamic structural analysis, or Fourier analysis as it is commonly known. It was this 
technique, in conjunction with others, that enabled Cadillac to save a mountain of time and 
money,' and pare down the number of prototypes necessary. It also did away with much 
trial and error on the solution of noise and vibration problems.'' 

In order to understand the dynamic behavior of a vibrating structure, measurements of the 
dynamic properties of the structure and its components are essential. Even though the 
dynamic properties of certain components can be determined with finite computer 
techniques, experimental verification of these results are skill necessary in most cases. 

One area of structural dynamics testing is referred to as modal analysis. Simply stated, 
modal analysis is the process of characterizing the dynamic properties of an elastic structure 



by identifying its modes of vibration. That is, each mode has a specific natural frequency 
and damping factor which can be identified from practically any point on the structure. In 
addition, it has a characteristic ''mode shape" which defines the mode spatially over the 
entire structure.  

Once the dynamic properties of an elastic structure have been characterized, the behavior 
of the structure in its operating environment can be predicted and, therefore, controlled and 
optimized. 

In general, modal analysis is valuable for three reasons: 

1) Modal analysis allows the verification and adjusting of the mathematical models of the 
structure. The equations of motion are based on an idealized model and are used to predict 
and simulate dynamic performance of the structure. They also allow the designer to 
examine the effects of changes in the mass, stiffness and damping properties of the 
structure in greater detail. For anything except the simplest structures, modeling is a 
formidable  

 

Experimental measurements on the actual hardware result in a physical check of the 
accuracy of the mathematical model. If the model predicts the same behavior that is 
actually measured, it is reasonable to extend the use of the model for simulation, thus 
reducing the expense of building hardware and testing each different configuration. This 
type of modeling plays a key role in the design and testing of aerospace vehicles and 
automobiles, to name only two.  
2) Modal analysis is also used to locate structural weak points. It provides added insight into 
the most effective product design for avoiding failure. This often eliminates the tedious trial 
and error procedures that arise from trying to apply inappropriate static analysis techniques 
to dynamic problems. 
3) Modal analysis provides information that is essential in eliminating unwanted noise or 
vibration. By understanding how a structure deforms at each of its resonant frequencies, 



judgments can be made as to what the source of the disturbance is, what its propagation 
path is, and how it is radiated into the environment. 

In recent years, the advent of high performance, low cost minicomputers, and computing 
techniques such as the fast Fourier transform have given birth to powerful new 
"instruments" known as digital Fourier analyzers (see Figure 1). The ability of these 
machines to quickly and accurately provide the frequency spectrum of a timedomain signal 
has opened a new era in structural dynamics testing. It is now relatively simple to obtain 
fast, accurate, and complete measurements of the dynamic behavior of mechanical 
structures, via transfer function measurements and modal analysis. 

Techniques have been developed which now allow the modes of vibration of an elastic 
structure to be identified from measured transfer function data,l2. Once a set of transfer 
(frequency response) functions relating points of interest on the structure have been 
measured and stored, they may be operated on to obtain the modal parameters; i.e., the 
natural frequency, damping factor, and characteristic mode shape for the predominant 
modes of vibration of the structure. Most importantly, the modal responses of many modes 
can be measured simultaneously and complex mode shapes can be directly identified, 
permitting one to avoid attempting to isolate the response of one mode at a fume, i.e., the 
so called ''normal mode'' testing concept. 

The purpose of this article is to address the problem of making effective structural transfer 
function measurements for modal analysis. First, the concept of a transfer function will be 
explored. Simple examples of one and two degree of freedom models will be used to explain 
the representation of a mode in the Laplace domain. This representation is the key to 
understanding the basis for extracting modal parameters from measured data. Next, the 
digital computation of the transfer function will be shown. In Part 11, the advantages and 
disadvantages of various excitation types and a comparison of results will illustrate the 
importance of choosing the proper type of excitation. In addition, the solution for the 
problem of inadequate frequency resolution, nonlinearities and distortion will be presented. 

The Structural Dynamics Model 

The use of digital Fourier analyzers for identifying the modal properties of elastic structures 
is based on accurately measuring structural transfer (frequency response) functions. This 
measured data contains all of the information  



 

necessary for obtaining the modal (Laplace) parameters which completely define the 
structures' modes of vibration. Simple one and two degree of freedom lumped models are 
effective tools for introducing the concepts of a transfer function, the eplane representation 
of a mode, and the corresponding modal parameters. 

The idealized single degree of freedom model of a simple vibrating system is shown in 
Figure 2. It consists of a spring, a damper, and a single mass which is constrained to move 
along one axis only. If the system behaves linearly and the mass is subjected to any 
arbitrary time varying force, a corresponding time varying motion, which can be described 
by a linear second order ordinary differential equation, will result. As this motion takes 
place, forces are generated by the spring and damper as shown in Figure 2.  



The equation of motion of the mass m is found by writing Newton's second law for the mass 
(AFAR = ma ), where ma is a real inertial force, 

 

where x(t) and x(t) denote the first and second time derivatives of the displacement x(t). 
Rewriting equation (1) results in the more familiar form:  

 

and m, c, and k are the mass, damping constant, and spring constant, respectively. 

Equation (2) merely balances the inertia force , the damping force , and the 

spring force (kx) , against the externally applied force,  . 

The multiple degree of freedom case follows the same general procedure. Again, applying 
Newton's second law, one may write the equations of motion as: 

 

and 

 

It is often more convenient to write equations (3) and (4) in matrix form: 

 

or equivalently, for the general ndegree of freedom system,  

 

and the previously defined force, displacement, velocity, and acceleration terms are now b-
dimensional vectors. 

The mass, stiffness, and damping matrices contain all of the necessary mass, stiffness, and 
damping coefficients such that the equations of mohon yield the correct time response when 
arbitrary input forces are applied. 



The timedomain behavior of a complex dynamic system represented by equation (6) is very 
useful information. However, in a great many cases, frequency domain information turns 
out to be even more valuable. For example, natural frequency is an important characteristic 
of a mechanical system, and this can be more clearly identified by a frequency domain 
representation of the data. The choice of domain is clearly a function of what information is 
desired. 

One of the most important concepts used in digital signet processing is the ability to 
transform data between the time and frequency domains via the Fast Fourier Transform 
(FFT) and the Inverse FFT. The relationships between the time, frequency, and Laplace 
domains are well defined and greatly facilitate the process of implementing modal analysis 
on a digital Fourier analyzer. Remember that the Fourier and Laplace transforms are the 
mathematical tools that allow data to be transformed from one independent variable to 
another (time, frequency or the Laplace svariable). The discrete Fourier transform is a 
mathematical tool which is easily implemented in a digital processor for transforming hme-
domain data to its equivalent frequency domain form, and vice versa. It is important to note 
that no information about a signal is either gained or lost as it is transformed from one 
domain to another. 

The transfer (or characteristic) function is a good example of the versatility of presenting 
the same information in three different domains. In the time domain, it is the unit impulse 
response, in the frequency domain the frequency response function and in the Laplace or s-
domain, it is the transfer function. Most importantly, all are transforms of each other.  

Because we are concerned with the identification of modal parameters from transfer 
function data, it is convenient to return to the single degree of freedom system and write 
equation (2) in its equivalent transfer function form.  

The Laplace Transform.Recall that a function of time may be transformed into a function 
of the complex variable s by: 

 

The Laplace transform of the equation of motion of a single degree of freedom system, as 
given in equation (2), is 

 

 

This transformed equation can be rewritten by combining the initial conditions with the 
forcing function, to form a new F(s): 

 

It should now be clear that we have transformed the original ordinary differential equation 
into an algebraic equation where s is a complex variable known as the Laplace operator. It 



is also said that the problem is transformed from the time (real) domain into the s 
(complex) domain, referring to the fact that time is always a real variable, whereas the 
equivalent information in the sdomain is described by complex functions. One reason for the 
transformation is that the mathematics are much easier in the sdomain. In addihon, it is 
generally easier to visualize the parameters and behavior of damped linear systems in the 
sdomain. 

Solving for X(s) from equation (9), we find  

 

The denominator polynomial is called the characteristic equation, since the roots of this 
equation determine the character of the hme response. The roots of this characteristic 
equation are also called the poles or singularities of the system. The roots of the numerator 
polynomial are called the zeros of the system. Poles and zeros are critical frequencies. At 
the poles the function x(s) becomes infinite; while at the zeros, the function becomes zero. 
A transfer function of a dynamic system is defined as the ratio of the output of the system 
to the input in the sdomain. It is, by definition, a function of the complex variable s. If a 
system has m inputs and n resultant outputs, then the system has m x n transfer functions. 
The transfer function which relates the displacement to the force is referred to as the 
compliance transfer function and is expressed mathematically as, 

 

From equations (10) and (11), the compliance transfer function is,  

 

Note that since s is complex, the transfer function has a real and an imaginary part. The 
Fourier transform is obtained by merely substituting jw for a. This special case of the 
transfer function is called the frequency response function In other words, the Fourier 
transform is merely the Laplace transform evaluated along the jw or frequency axis, of the 
complex Laplace plane. 

The analytical form of the frequency response function is therefore found by letting s =jw  

 

By making the following substitutions in equation (13), 

Cc = critical damping coefficient  

we can write the classical form of the frequency response function so, 



 

However, for our purposes, we will continue to work in the sdomain. The above generalized 
transfer function, equation (12), was developed in terms of compliance. From an 
experimental viewpoint, other very useful forms of the transfer function are often used and, 
in general, contain the same information. Table I summarizes these different forms. 

The sPlane. Since s is a complex variable, we can represent all complex values of s by 
points in a plane. Such a plane is referred to as the splane. Any complex value of s may be 
located by plotting its real component on one axis and its imaginary component on the 
other. Now, the magnitude of any function, such as the compliance transfer function, H(s), 
can be plotted as a surface above the plane of Figure 4. This requires a threedimensional 
figure which can be difficult to sketch, but greatly facilitates the understanding of the 
transfer function. By definition, s = a + jw where a is the damping coefficient and w is the 
angular frequency. 

The inertance transfer function of a simple two degree of freedom system is plotted as a 
function of the s variable in Figure 5. The transfer function evaluated along the frequency 
axis (s=jw) is the Fourier transform or the system frequency response function. It is shown 
by the heavy line. If we were to measure the frequency response function for this system 
via experimental measurements using the Fourier transform, we would obtain a complex-
valued function of frequency. It must be represented by its real (coincident) part and its 
imaginary (quadrature) part; or 

 



 

equivalently, by its magnitude and phase. These forms are shown in Figure 6. 

In general, complex mechanical systems contain many modes of vibration or "degrees of 
freedom." Modern modal analysis techniques can be used to extract the modal parameters 
of each mode without requiring each mode to be isolated or excited by itself. 

Modes of Vibration. The equations of motion of an n degree of freedom system can be 
written as 

 

Where, F(s) = Laplace transform of the applied force vector  

X(s) = Laplace transform of the resulting output vector  

B(s) = Ms2 + Cs + K  
s = Laplace operator  

B(s) is referred to as the system matrix. The transfer matrix, H(s) is defined as the inverse 
of the system matrix, hence it satisfies the equation.  

X(s) = H(s) F(s) ( 16)  

Each element of the transfer matrix is a transfer function.  

From the general form of the transfer function described in equation (16), H(s) can always 
be written in partial fraction form as:  



 





 

where n = number of degrees of freedom  

pk = kth root of the equation obtained by setting the determinant of the matrix B(s) equal to 
zero  
ak = residue matrix for the km root.  

As mentioned earlier, the roots pk are referred to as poles of the transfer function. These 
poles are complex numbers and always occur in complex conjugate pairs, except when the 
system is critically or supercritically damped. In the latter cases, the poles are realvalued 
and lie along the real (or damping) axis in the splane.  

Each complex conjugate pair of poles corresponds to a mode of vibration of the structure. 
They are complex numbers written as  

 

Where * denotes the conjugate, a. is the modal damping coefficient, and `uk is the natural 
frequency. These parameters are shown on the eplane in Figure 8. An alternate set of 
coordinates for defining the pole locations are the resonantirequency, given by 

 

and the damping factor, or percent of critical damping, given by:  

 

The transfer matrix completely defines the dynamics of the system. In addition to the poles 
of the system (which define the natural frequency and damping), the residues from any row 
or column of H(s) define the system mode shapes for the various natural frequencies. In 
general, a pole location, Pit, will be the same for all transfer functions in the system because 
a mode of vibration is a global property of an elastic structure. The values of the residues, 
however,  



 

depend on the particular transfer function being measured. The values of the residues 
determine the amplitude of the resonance in each transfer function and, hence, the mode 
shape for the particular resonance. From complex variable theory, we know that if we can 
measure the frequency response function (via the Fourier transform) then we know the 
exact form of the system (its transfer function) in the splane, and hence we can find the 
four important properties of any mode. Namely, its natural frequency, damping, and 
magnitude and phase of its residue or amplitude. 

While this is a somewhat trivial task for a single degree of freedom system, it becomes 
increasingly difficult for complex systems with many closely coupled modes. However, 
considerable effort has been spent in recent years to develop sophisticated algorithms for 
curvefitting to experimentally measured frequency response functions.'2 This allows the 
modal properties of each measured mode to be extracted in the presence of other modes. 

From a testing standpoint, these new techniques offer important advantages. Writing 
equation (16) in matrix form gives: 

 

If only one mode is associated with each pole, then it can be shown that the modal 
parameters can be identified from any row or column of the transfer function matrix [H], 
except those corresponding to components known as node points. In other words, it is 
impossible to excite a mode by forcing it at one of its node points (a point where no 
response is present). Therefore, only one row or column need be measured.  

To measure one column on the transfer matrix, an exciter would be attached to the 
structure (point #1 to measure column #1; point #2 to measure column #2) and responses 
would be measured at points #1 and #2. Then the transfer function would be formed by 
computing,  

 

To measure a row of the transfer matrix, the structure would be excited at point #1 and the 
response measured at point #1. Next, the structure would be excited at point #2 and the 
response again measured at point #1. This latter case corresponds to having a stationary 
response transducer at point #1, and using an instrumented hammer for applying impulsive 



forcing functions. Both of these methods are referred to as single point excitation 
techniques.  

Complex Mode Shapes. Before leaving the structural dynamic model, it is important to 
introduce the idea of a complex mode shape. Without placing restrictions on damping 
beyond the fact that the damping matrix be symmetric and real valued, modal vectors can 
in general be complex valued. When the mode vectors are real valued, they are the 
equivalent of the mode shape. In the case of complex modal vectors, the interpretation is 
slightly different. 

Recall that the transfer matrix for a single mode can be written as:  

 

where  

ak = (n * n) complex residue matrix.  

pk = pole location of mode k.  

A single component of H(s) is thus written as  

 

where  

rk / 2j = complex residue of mode k.  

Now, the inverse Laplace transform of the transfer function of equation (24) is the impulse 
response of mode k; that is, if only mode k was excited by a unit impulse, its time domain 
response would be 

where  

 

 

A phase shift in the impulse response is introduced by the phase angle Ok of the complex 
residue. For Ok=°, the mode is said to be "normal" or real valued. It is this phase delay in 
the impulse response that is represented by the complex mode shape. Experimentally, a 
real or normal mode is characterized by the fact that all points on the structure reach their 
maximum or minimum deflection at the same time. In other words, all points are either in 
phase or 180° out of phase. With a complex mode, phases other than 0° and 180~ are 
possible. Thus, nodal lines will be stationary for normal modes and nonstationary! or 



"traveling" for complex modes. The impulse response for a single degree of freedom system 
and for the two degree of freedom system represented in Figure 5 are shown in Figure 9.  

 

The digital Fourier Analyzer has proven to be an ideal for measuring structural frequency 
response functions quickl! and accurately. Since it provides a broadband frequency 
spectrum very quickly (e.g., ~ 100 ms for 512 spectral lines when implemented in 
microcode), it can be used for obtaining broadband response spectrums from a structure 
which is excited by a broadband input signal. Furthermore, if the input and response time 
signals are measured simultaneously, Fourier transformed, and the transform of the 
response is divided by the transform of the input, a transfer function between the input and 
response points on the structure is measured. Because the Fourier Analyzer contains a 
digital processor, it possesses a high degree of flexibility in being able to postprocess 
measured data in many ways. 

It has been shown1,2 that the modes of vibration of an elastic structure can be identified 
from transfer function measurements by the application of digital parameter identification 
techniques. HewlettPackard has implemented these technicltles on the HP 5451B Fourier 
Analyzer. The system uses a single point excitation technique. This approach, when coupled 
with a broadband excitation allows all modes in the bandwidth of the input energy to be 
excited simultaneously The modal frequencies, damping coefficients, and residues 
(eigenvectors) are then extracted from the measured broadband transfer functions via an 
analytical curve fitting algorithm. This method thus permits an accurate definition of modal 
parameters without exciting each mode individually. Part II of this article will address the 
problem of making transfer function measurements 



The data shown in Figure 10 was obtained by using the HewlettPackard HP 5451B Fourier 
Analyzer to measure the required set of frequency response functions from a simple 
rectangular plate and identify the predominant modes of vibration. Figure 10A shows a 
typical frequency response function obtained front using an impulse testing technique on a 
flat aluminum plate. Input force was measured with a load cell and the output response was 
measured w ith an accelerometer. After 55 such functions were measured and stored, the 
modal parameters vvere identifiecl via a curve fitting algorithm. In addition, the Fourier 
Analyzer provided an animated isometric display of each mode. the results of which are 
shown in Figures 10B 10F. 

The Transfer and Coherence Functions 

The measurement of structural transfer functions using digital Fourier analyzers has many 
important advantages for the testing laboratory. However, it is imperative that one have a 
firm understanding of the measurement process in order to make effective measurements. 
For instance, digital techniques require that all measurements be discrete and of finite 
duration. Thus, in order to implement the Fourier transform digitally, it must be changed to 
a finite form known as the Discrete Fourier Transform (DFT). This means that all continuous 
time waveforms which must be transformed must be sampled (measured) at discrete 
intervals of time, uniformly separated by an interval At. It also means that only a finite 
number of samples N can he taken and stored. The record length T is the n 

 

The effect of implementing the DFT in a digital memory is that it no longer contains 
magnitude and phase information at all frequencies as would he the case for the continuous 
Fourier transform. Rather, it describes the spectrum of the waveform at discrete frequencies 
and with finite resolution  





up to some maximum frequency, Fmax, which according to Shannon's sampling theorem, 
obeys  

 

As a direct consequence of equation (27), we can write the physical law which defines the 
maximum frequency resolution obtainable for a sampled record of length, T.  

 

When dealing with real valuedtime functions, there will be N points in the record. However, 
to completely describe a given frequency, two values are required; the magnitude and 
phase or, equivalently, the real part and the imaginary part. Consequently, N points in the 
time domain can yield N/2 complex quanhties in the frequency domain. With these 
important relationships in mind, we can return to the problem of measuring transfer 
functions.  

The general case for a system transfer function measurement is shown below 

 

 

The linear Fourier spectrum is a complex valued function that results from the Fourier 
transform of a time waveform. Thus, Sx and Sx have a real (in phase or coincident) and 
imaginary (quadrature) parts. 

In general, the result of a linear system on any time domain input signal, x(t), may be 
determined from the convolution of the system impulse response, h(t), with the input 
signal, x(t), to give the output, y(t). 

 

This operation may be difficult to visualize. However, a very simple relationship can be 
obtained by applying the Fourier transform to the convolution integral. The output 
spectrum, Sy, is the product of the input spectrum, Sx, and the system transfer function, 
H(f). 



 

In other words, the transfer function of the system is defined as: 

 

The simplest implementation of a measurement scheme based on this technique is the use 
of a sine wave for x(f). However, in many cases, this signal has disadvantages compared to 
other more general types of signals. The most general method is to measure the input and 
output time waveforms in whatever form they may be, and to calculate H using Sx, Sx, and 
the Fourier transform. 

For the general measurement case, the input x(t) is not sinusoidal and will often be chosen 
to be random noise, especially since it has several advantages when used as a stimulus for 
measuring structural transfer functions. However, it is not generally useful to measure the 
linear spectrum of this type of signal because it cannot be smoothed by averaging; 
therefore we typically resort to the power spectrum. 

The power spectrum of the system input is defined and computed as: 

 

where  

Sx
* = Complex conjugate of Sx 

where  

 

where  

Sy
* = Complex conjugate of Sy. 

The cross power spectrum between the input and the output is denoted by and defined 
as,  

 

Returning to equation (31), we can multiply the numerator and denominator by Sr
* This 

shows that the transfer funccan be expressed as the ratio of the cross power spectrum to 
the input auto power spectrum. 



 

There are three important reasons for defining the system transfer function in this way. 
First, this technique measures magnitude and phase since the cross power spectrum 
contains phase information. Second, this formulation is not limited to sinusoids, but may in 
fact be used for any arbitrary waveform that is Fourier transformable (as most physically 
realizable time functions are). Finally, averaging can be applied to the measurement. This 
alone is an important consideration because of the large variance in the transfer function 
estimate when only one measurement is used. So, in general, 

 

where denotes the ensemble average of the cross power spectrum and or 
represents the ensemble average of the input auto power spectrum. 

As an added note, the impulse response h(t) of a linear system is merely the inverse 
transform of the system transfer function,  

 

Reducing Measurement Noise  

The importance of averaging becomes much more evident if the transfer function model 
shown above is expanded to depict the "realworld" measurement situation. One of the 
major characteristics of any modal testing system is that extraneous noise from a variety of 
sources is always measured along with the desired excitation and response signals. This 
case for transfer function measurements is shown below. 



 

 

 

Since we are interested in identifying modal parameters from measured transfer functions, 
the variance on the parameter estimates is reduced in proportion to the amount of noise 
reduction in the measurements. The digital Fourier analyzer has two inherent advantages 
over other types of analyzers in reduction of measurement noise; namely, ensemble 
averaging, and a second technique commonly referred to as post data smoothing which may 
be applied after the measurements are made. 

Without repeating the mathematics for the general model of a transfer function 
measurement in the presence of noise, it is easy to show that the transfer function is more 
accurately written as:  



 

where the frequency dependence notation has been dropped and,  

 

 

This form assumes that the noise has a zero mean value and is incoherent with the 
measured input signal. Now, as the number of ensemble averages becomes larger, the 

noise term becomes smaller and the ratio / , more accurately estimates the 
true transfer function. Figure 11 shows the effect of averaging on a typical transfer function 
measurement.  

The Coherence Function  

To determine the quality of the transfer function, it is not sufficient to know only the 
relationship between input and output. The question is whether the system output is 
tocaused by the system input. Noise and/or nonlinear effects can cause large outputs at 
various frequencies, thus introducing errors in estimating the transfer function. The 
influence of noise and/or nonlinearities, and thus the degree of noise contamination in the 
transfer function is measured by calculating the coherence function, denoted by where  

 

The coherence function is easily calculated on a digital Fourier analyzer when transfer 
functions are being measured. It is calculated as: 

 

If the coherence is equal to 1 at any specific frequency, the system is said to have perfect 
causality at that frequency. In other words, the measured response power is caused totally 
by the measured input power (or by sources which are coherent with the measured input 
power). A coherence value less than 1 at a given frequency indicates that the measured 
response power is greater than that due to the measured input because some extraneous 
noise is also contributing to the output power.  

When the coherence is zero, the output is caused totally by sources other than the 
measured input. In general terms, the coherence is a measure of the degree of noise 
contamination a measurement. Thus, with more averaging, the estimate of coherence 
contains less variance, therefore giving a better estimate of the noise energy in a measured 
signal. This is illustrated in Figure 12.  



Since the coherence function indicates the degree of causality in a transfer function it has 
two very important uses: 
1) It can be used qualitatively to determine how much averaging is required to reduce 
measurement noise. 
2) It can serve as a monitor on the quality of the transfer function measurements.  

The transfer functions associated with most mechanical systems are so complex in nature 
that it is virtually impossible to judge their validity solely by inspection. In one case familiar 
to the author, a spacecraft was being excited with random noise in order to obtain structural 
transfer functions for modal parameter identification The transfer and coherence functions 
were monitored for each measurement. Then, between two measurements the coherence 
function became noticeably different from unity. After rechecking all instrumentation, it was 
discovered that a random vibration test being conducted in a separate part of the same 
building was providing incoherent excitation via structural (building) coupling, even through 
a seismic isolation mass. This extraneous source was increasing the variance on the 
measurement but would probably not have been discovered without use of the coherence 
function.  

Summary  

In Part 1, we have introduced the structural dynamic model for elastic structures and the 
concept of a mode of vibration in the Laplace domain. This means of representing modes of 
vibration is very useful because we are interested in identifying the modal parameters from 
measured frequency response functions. Lastly, the procedure for calculating transfer and 
coherence functions in a digital Fourier analyzer were discussed.  

In Part II, we will discuss various techniques for accurately measuring structural transfer 
functions. Because modal parameter identification algorithms work on actual measured 
data, we are interested in making the best measurements possible, thus increasing the 
accuracy of our parameter estimates. Techniques for exciting structures with various forms 
of excitation will be discussed. Also, we will discuss methods for arbitrarily increasing the 
available frequency resolution via band selectable Fourier analysis -the socalled zoom 
transform. 
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