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Structural frequency response testing, also known as "modal analysis," is becoming an 
integral part of the development and testing of a wide range of industrial and consumer 
products. It is an essential tool for the definition and solution of many types of structural 
dynamics problems, such as fatigue, vibration, and noise. This article discusses one of the 
most useful techniques for experimental structural frequency response testing-one based 
upon excitation of the structure with an impulsive force. In many situations, this is the 
simplest and fastest of the various techniques commonly used today. However, the nature 
of the excitation and response signals in the impulse technique requires special signal 
processing techniques if accurate frequency response measurements are to be obtained. 
This article discusses the application of the impulse technique and reviews the special 
problems encountered in practice and the techniques that have been developed for dealing 
with those problems.  

Knowledge of the dynamic characteristics of structural elements often means the difference 
between success and failure in the solution of complex noise and vibration problems. The 
effects of structural resonances-conditions of relatively low dynamic stiffness-can lead to 
seriously reduced effectiveness of isolation elements and result in significantly increased 
dynamic response of sound radiating or vibration exposure elements. Quantitative 
knowledge of the frequencies, damping, and mode shapes associated with structural 
resonances aids in understanding how forces are generated and transmitted throughout 
mechanical systems and allows intelligent evaluation of various noise and vibration control 
modifications and treatments. The determination of the resonance characteristics of 
structures is termed "modal analysis." The purpose of this paper is to review in detail one 
particularly useful technique for experimental modal analysis, a technique employing the 
application of an impulsive force to the structure.  

In two previous papers, the theory of modal analysis was reviewed and a number of 
techniques for experimental modal analysis were discussed, including sweptsine excitation, 
purerandom excitation, pseudorandom excitation, periodicrandom excitation, and various 
forms of transient excitation.12 The impulse technique falls into the class of transient 
excitation. It deserves particular attention because, for a wide range of structures, it is the 
simplest and fastest technique for obtaining good estimates of the required frequency 
response information. There are, however, a number of errors that can occur in the 
application of the impulse technique and there are certain types of struc for which the 
impulse technique is illsuited. The major errors encountered in the application of the 
impulse technique will be discussed along with the signal processing and experimental 
techniques applicable to impulse testing. 

Theory  

Frequency Response Function. The measurement of the frequency response function is the 
heart of modal analysis. The frequency response function H(f) is defined in terms of the 
single input/single output system, shown in Figure 1, as the ratio of the Fourier transforms 
of the system output or response v(t) to the system input or excitation u(t), Equation 1  



 

Where V(f) = Fourier transform of system output v(t)  
U(f) = Fourier transform of system input u(t). 

The only requirements for a complete description of the frequency response function are 
that the input and output signals be Fourier transformable, a condition that is met by all 
physically realizable systems, and that the input signal be nonzero at all frequencies of 
interest. If the system is nonlinear or timevariant, the frequency response function will not 
be unique, but will be a function of the amplitude of the input signal in the case of a 
nonlinear system and a function of time in the case of a system with timevarying properties. 

The frequency response function may be computed directly from the definition as the ratio 
of the Fourier transforms of the output and input signals. However, better results are 
obtained in practice by computing the frequency response function as the ratio of the cross-
spectmm be the input and output to the power spectrum of the input, Equation 2. This 
relationship is derived by multiplying the numerator and denominator of the righthand side 
of Equation 1 by the complex conjugate of the input Fourier transform.  

 

The usefulness of this form of the frequency response function can be seen by considering 
the practical single input / single output measurement situation illustrated in Figure 2, 
where m(t) and n(t) represent noise at the input and output measurement points 
respectively.  

The measured frequency response function H'(f) is given by the expression:  

 

where the upper case letters denote the Fourier transform of the corresponding time domain 
signals. 

In this form, the measured frequency response will be a good approximation of the true 
frequency response only if the measurement noise at both the input and output 
measurement points is small relative to the input and output signals. Multiplying the 
numerator and denominator of the righthand side of Equation 3 by the complex conjugate of 
X(f) yields  



 

Now, if the measurement signals signals and and are noncoherent with each other and with 
the input signal u(t), then the expected value of the crossspectrum terms involving m and n 
in Equation 4 will equal zero, yielding  

 

where H(f)is the desired true frequency response function.  

Thus, if the noisetosignal ratio at the input measurement point [Gm(f)/ Guf)] is much less 
than 1, the measured frequency response will closely approximate the desired true 
frequency response function.  

It should be pointed out here that there is an inherent bias error associated with the 
computation of the cross-spectrum and the magnitude of this bias error is inversely 
proportional to the number of averages in the computation. Thus, the greater the 
measurement noise, the greater the number of averages required to approach the expected 
value of the crossspectrum between the input and the output measurement signals. With 
measurement technigues employing many averages, the bias error can usually be reduced 
to an insignificant level so that it is only necessary to minimize the noise in the 
measurement of the input signal. However, if there is significant measurement noise and 
only a few averages are used, then the computed values of the crossspectrum terms 
involving the noise signals in Equation 4 can be large relative to the true cross-spectrum, 
with resulting large errors in the measured frequency response function. In general, only a 
few averages are used in the impulse technique; otherwise, one of its major advantages - 
its speed - is lost. Therefore, it is important to minimize measurement noise in both the 
input and output signals when using the impulse technique. The crossspectrum bias error 
and its effects are discussed in more detail in Reference 3.  

Coherence Function. There is another important reason for computing the frequency response function in terms of 
the crossspectrum: it allows the computation of the coherence function between the input anti output signals. The 
coherence function is defined by the equation 



 

According to the definitions of the power spectrum and the crossspectrum, the coherence function will he identically 
equal to 1 if there is no measurement noise and the system is linear. The minimum value of the coherence function, 
which occurs when the two signals are totally uncorrelated, is 0. Thus, the coherence function is a measure of the 
contamination of the two signals in terms of noise and nonlinear effects, with very low contamination indicated for 
values close to 1.  

Since the crossspectrum is included in the definition of the coherence function, the cross-
spectrum bias error must be reduced to an acceptable level if a good statistical estimate of 
the coherence function is to be achieved. As stated above, the number of averages used in 
the impulse technique is usually not great enough to significantly reduce the bias error. 
However, the coherence function is still useful for indicating the importance of noise in the 
impulse technique. This is because noise in the signals causes variance in the value of the 
coherence function with frequency. This effect is illustrated in the section on measurement 
procedures.  

Display of Frequency Response. The frequency response function is complex - that is, it 
has associated with it both magnitude and phase. Therefore, it can be displayed in a 
number of forms, including magnitude and phase versus frequency, real and imaginary 
magnitudes versus frequency, and imaginary magnitude versus real magnitude. Each of 
these types of displays has its own particular usefulness. The most common type of display 
for structural frequency response data is magnitude and phase versus frequency, with the 
magnitude and frequency plotted logarithmically. This type of display, with the magnitude in 
terms of compliance (ratio of displacement to force), is called a Bode plot. In this form of 
the frequency response function, resonances occur as peaks in compliance plots (points of 
maximum dynamic weakness) and all resonance peaks of equal damping have the same 
width regardless of resonance frequency. Lines of constant dynamic stiffness have zero 
slope, and massdominated frequency response lines have a 12 dBperoctave slope. Figure 3 
shows an example of a Bode plot of a measured frequency response function.  

Resonances occur as nearly circular arcs in the complex plane (real versus imaginary plot) 
with frequency increasing in a clockwise direction around the arc. In the case of real normal 
modes (which occur in systems with relatively low damping and with resonances well-
separated in frequency), each resonance arc is approximately tangent with and lies below, 
the real axis and is symmetric about the imaginary axis when the frequency response is 
expressed as compliance. The complex plane plot is useful when certain types of analytical 
curve fitting operations are being performed on the frequency response data. Figure 4 
shows the complex plane plot of the frequency response function shown in Figure 3.  

The plots of the real and imaginary magnitudes of frequency response versus frequency are 
most useful when dealing with real normal modes. In this case the resonances will occur as 
peaks in the imaginary magnitude plot and the real magnitude will pass through zero at the 
resonance frequency when the frequency response is expressed as compliance. Figure 5 
shows the real and imaginary plots for the data in Figure 3.  

The frequency response characteristics of a structural element are determined by measuring 
a set of cross-frequency response functions as discussed in Reference 1. The crossfrequency 
response functions may be obtained by exciting at one location on the structure and 
measuring response at various locations, or by measuring the response  



 

 

 



at a single location to excitation at various locations. The resulting frequency response 
functions comprise one column of the transfer matrix in the first case, and one row of the 
transfer matrix in the second case. Either set will, in general, completely define the modal 
characteristics ofthe structural element. In mathematical terms the set of frequency 
response functions yields the eigenvalues and eigenvectors, which are, in general, complex 
terms. The real part of an eigenvalue is the damping and the imaginary part is the 
frequency associated with a given resonance. Each eigenvector defines a resonance mode 
shape.  

With real normal modes, each point on a structure is either exactly inphase or exactly 180 
degrees outofphase with any other point at the resonance frequency. Certain types of 
damping which are often encountered in practice will cause the eigenvectors to have non-
zero imaginary components, resulting in complex mode shapes. When a mode is complex, 
the relative phase associated with a point on a structure is some value other than O or 180 
degrees, with the result that node lines (lines of zero deflection) are not stationary. Precise 
description of complex modes requires that some type of analytical curve fitting technique 
be applied to the frequency response data.  

Measurement of Frequency Response. The frequency response function of an operating 
system can be computed if the system input and output signals meet previously stated 
requirements of Fourier transformability and non-zero value, assuming the system input 
and response can be measured. However, in practice there are usually multiple inputs to the 
system - either several inputs at different locations or inputs in more than one direction at a 
given location. In the case of multiple coherent inputs, the complexity of the analysis is 
greatly increased. For this reason, and the difficulty of accurately monitoring operating 
inputs, frequency response measurements are usually made by applying the system input 
"artificially" through some type of exciter. It is in the form of the input signal and the way it 
is applied to the structure that the wide variety of frequency response testing techniques 
arises.  

The usefulness of the impulse technique lies in the fact that the energy in an impulse is 
distributed continuously in the frequency domain rather than occurring at discrete spectral 
lines as in the case of periodic signals. Thus, an impulse force will excite all resonances 
within its useful frequency range. The extent of the useful frequency range of an impulse is 
a function of the shape of the impulse and its time duration. Figure 6 shows the frequency 
spectra of two square pulses of equal energy but different duration. For a square pulse the 
frequencies of the zero crossings are at integral multiples of the inverse of the time duration 
of the impulse, illustrating the very important inverse relationship between the time 
duration of an impulse and its frequency content.  

The useful frequency range of an impulse is also a function of the shape of the impulse. 
Figure 7 shows three  



 

 

different pulses of equal energy and time duration and their corresponding frequency 
spectra. By varying the weight and hardness of an impacting device and the manner in 
which the impact is applied, the shape and time duration of the impulse produced can be 
varied to suit the measurement requirements. Such practical will be further discussed in the 
section on experimental measurement techniques.  

Nonlinearities in Structures  

Excitation of a nonlinear system by a purerandom signal will yield the best estimate (in a 
meansquare sense) of the linear system response. Excitation by a pure sine wave is also 
useful for studying nonlinear systems because it allows precise control ofthe input spectrum 
level. However, the impulse technique, because of its very high ratio of peak level to total 
energy, is particularly illsuited for testing nonlinear systems. Therefore, it is important to 
understand the various types of nonlinearities that can occur in structural systems and to be 
able to recognize nonlinearities in measured frequency response functions.  



One of the most common types of nonlinearities encountered in structures is that due to 
clearance between parts. This type of nonlinearity is frequently encountered, for example, 
when testing gear systems and shafts mounted in bearings. The effects of this type of 
nonlinearity on measured frequency response functions when using impulse excitation are 
poor estimates of static stiffness values and poor repeatability of the frequency response 
estimates. Also, the apparent damping in the estimates will be greater than the actual 
examples.  

The best method of dealing with this type of nonlinearity is to preload the system to take up 
clearances. Care must be taken when this is done, however, because any preload will 
change the boundary conditions of the structure and can itself lead to erroneous frequency 
response estimates. The usual approach is to apply the preload through a very soft spring 
so that the resonances associated with the preload lie below the frequency range of interest.  

Another type of nonlinearity that is frequently encountered is nonlinear damping. Nonlinear 
damping effects are usually associated with joints in the structure, where the damping is a 
function of the relative displacement at the joint. In general, the frequency response 
estimates obtained by the impulse technique will agree most closely with those obtained 
with a low level of continuous excitation. However, if the point of excitation is close to a 
location where nonlinear damping occurs, there will be high relative motion at that location, 
and the apparent damping in the measured frequency response will be high. In systems 
with low damping, this will give the measured frequency response a discontinuous 
appearance, due to the varying level of damping as the response to the impulse attenuates 
with time. This type of nonlinearity is illustrated in Figure 8, which shows frequency 
response measurements on a machine tool with different force excitation levels. The 
frequency response measurements were made with sweptsine excitation.  

The third type of nonlinearity that commonly occurs in structures is loadsensitive stiffness, 
where the spring rate of elastic elements either increases or decreases with load. The most 
direct way to identify this type of nonlinearity is to measure frequency response as a 
function of static preload and observe the change in resonance frequencies. This type of 
nonlinearity is illustrated in Figure 9, which shows frequency response measurements on a 
pump with three different levels of preload.  

Signal Processing  

The particular characteristics of an impulsive force signal and the resulting structural 
response signal make the impulse technique especially susceptible to two problems: noise 
and truncation errors. While these problems occur to some extent with other frequency 
response testing techniques, their unique importance in the impulse technique requires 
special signal processing methods.  

Force Signal. It was pointed out in the previous section that the usable frequency range for 
an impulse depends on the shape and time duration of the impulse. In order to insure that 
there is sufficient force over the frequency range of interest, it is necessary that the first 
zero crossing of the Fourier transform of the impulse be well above the maximum frequency 
of interest. For a given time duration the first zero crossing occurs at the lowest frequency 
for a square pulse. For that type of pulse the first zero crossing occurs at a frequency equal 
to the inverse of the time duration. A good rule of thumb, then, is to insure that the 
duration of the impulse is less than 2(delta)t, where (delta)t is the sampling interval in the 
analogtodigital conversion process. This would put the first zero crossing of the Fourier 



transform of a square pulse at the Nyquist folding frequency, and the first zero crossing of 
other pulse shapes above the Nyquist folding frequency.  

The sample length is equal to N(delta)t where N is the number of digital values in each 
sample. A typical value of N is 1024. Thus, the duration of the impulse is very short relative 
to the sample length. This means that the total energy of noise represented in the time-
sample can be on the order of the energy of the impulse, even for high signaltonoise ratios. 
The noise problem is further aggravated when employing the zoom transform, which yields 
increased resolution in a given frequency band by effectively increasing the sample length.  

With other techniques, the effects of noise are reduced by averaging the power spectrum 
and crossspectrum functions prior to the computation of the frequency response function. 
However, only a few averages are usually used in the impulse technique. Otherwise, the 
time advantage of the technique is lost. Therefore, special timesample windows have been 
developed for the impulse technique.  

At first thought it might seem appropriate to just set all timesample values beyond the 
impulse to zero, since it is  

 

 



known that the true signal value after the impulse is zero. However, this would be 
equivalent to multiplying the signal by a narrow rectangular window. In applying any type of 
window, it is important to keep in mind that multiplication; by a window in one domain is 
equivalent to convolution of the Fourier transforms of the window and the data in the other 
domain, resulting in distortion of the transformed signal. This distortion will be minimized by 
minimizing the width of the main lobe of the window transform and suppressing its side 
lobes. However, there is a fundamental conflict between these requirements and the 
reduction of noise in the timesample because both the width of the main lobe and the 
amount of noise reduction are inversely proportional to the width of the window in the time 
domain. To further complicate the situation, suppression of the side lobes is generally 
achieved at the expense of broadening the main lobe.  

A good compromise has been arrived at in practice the form of a window with unity 
amplitude for the duration of the impulse and a cosine taper, with a duration of 1/16 of the 
sample time, from unity to zero. This window is shown in Figure 10. Figure 11 shows the 
results of applying the force window to an impulse signal with significant measurement 
noise. Comparison of the computed frequency response functions with and without the 
window applied shows that the window substantially improves the frequency response 
estimate.  

Response Signal. Noise problems may also be encountered in the response signal, 
particularly when dealing with heavily damped systems and when using zoom transform 
analysis. In both cases the duration of tile response signal may be short relative to the total 
sample time, so that noise may comprise a significant portion ofthe total energy in the time-
sample even with relatively high signaltonoise ratios. Another error in the response signal 
that is encountered when testing lightly damped structures occurs when the response signal 
does not significantly decay in the sample window. In this case the resulting timesample is 
equivalent to multiplying the true response signal by a rectangular window, with the result 
that the frequency resolution may not be sufficient to resolve individual resonances.  

An exponential window has been developed to reduce the errors that occur in both 
situations described above. The window shape is shown in Figure 12. The window decays 
exponentially from 1 to a value of 0.05 in the sample time. It can be applied directly to the 
timesample of the response signal or to the impulse response function. As with all windows, 
the exponential window does change the resulting measured frequency response function; 
but its only effect is to increase the apparent damping in the resonances. It does not change 
the resonance frequencies and, because the effect of the exponential window is the same on 
all frequency response measurements, it will not alter the measured mode shapes if applied 
to all measured frequency response functions. In addition to reducing  

 



 

 



 

noise and truncation errors, the exponential window will also reduce errors often occur when 
testing lightly damped systems in which the damping varies with the measurement position 
on the structure.  

Because the exponential window increases the apparent damping in the resonance modes, 
there is a tendency ofthe window to couple closely spaced resonance modes. Zoom 
transform analysis may be required in some cases to allow sufficient resolution of closely 
spaced modes when using the exponential window.  

The use of the exponential window for reducing noise effects in the response signal is 
illustrated in Figure 13. In this case the structure is fairly heavily damped, so that the 
response signal decays substantially in the first part of the timesample. It is seen that the 
application of the window provides a very noticeable smoothing effect on the measured 
frequency response function. Notice also that the window has not changed the resonance 
frequencies.  

Zoom Transform. Zoom transform analysis is discussed in some detail along with several 
examples in Reference 2. It is a very valuable tool in impluse testing, as it is in other 
frequency response measurement techniques. The effect of the zoom transform is to 
increase the resolution of the analysis by allowing independent selection of the upper and 
lower frequency limits of the analysis band. With the zoom transform, for example, it is 
possible to perform an analysis in the frequency range from 900 to 1000 Hz as opposed to 
the conresponding baseband range of 0 to 1000 Hz, resulting in a 10to1 increase in 
resolution, for a given sample size N, in the 900 to 1000 Hz band. Because of the greatly 
increased resolution possible with the zoom transform, it can he effectively used in 
frequency response testing to separate closely spaced resonance modes. This is illustrated 



in Figure 14, which shows a baseband frequency response measurment from 0 to 1000 Hz 
and a zoom transform analysis of the frequency response in the range from 260 to 340 Hz.  

There are two important effects of the zoom transform in  

 



 

the impulse technique, both associated with the resulting increase in sample time. The first 
effect is to make possible much better estimates of damping in lightly damped systems. 
This is due to the reduction of truncation errors in the sampled response signal. The second 
effect, mentioned previously, is aggravation of the noise problem in both the input and 
response signals. The second effect makes it essential that force and response windows be 
applied to the data in most cases when using the zoom transform with the impulse 
technique.  

Curve Fitting. Cases of extreme measurement noise require special signal processing 
techniques beyond the application of sample windows. One technique that has been found 
to be very useful in practice is to analytically curve fit the data. Figure 15 illustrates the 
application of a complex exponential algorithm to a force signal with a signal to-noise ratio 
of 1. (The complex exponential algorithm is discussed in some detail in Reference 4.) Figure 
15a shows the spectrum of the measured force signal and Figure 15b shows the analytically 



derived spectrum fitted to the data with five degrees of freedom. The quality of the fit is 
seen in comparing the analytical curve with the spectrum of the force signal with the 
measurement noise reduced, shown in Figure 15c.  

Equipment Requirements  

The measurement set up for the impulse technique is shown schematically in Figure 16. The 
force is applied to the structure by an impactor through a load cell and the response is 
measured by a suitable response transducer. After passing the force and response signals 
through signal conditioning equipment, including appropriate amplifiers and antialias filters, 
the signals are digitized. The digitized signals are then Fourier transformed, the appropriate 
sample windows are applied, and the crossspectrum and the two power spectra are 
computed and averaged. Finally, the frequency response and coherence functions are 
computed from the averaged power and crossspectra.  

The particular characteristics of each element of the test set up are described below. In 
addition to their individual characteristics, it is especially important that all elements be 
linear and have low noise when used in the impulse technique.  

Impactors. The characteristics of the impactor determine the magnitude and duration of 
the force pulse which, in turn, determine the magnitude and content of the pulse in the 
frequency domain. The two impactor characteristics of most importance are its weight and 
tip hardness. The frequency content of the force is inversely proportional to the weight of 
the impactor and directly proportional to the hardness of the tip. Since the weight also 
determines the magnitude of the force pulse, the impactor is usually chosen for its weight 
and then the tip hardness is varied to achieve the desired pulse time duration. The weight of 
impactors commonly used in practice varies from fractions of an ounce, for ball bearings 
used for very high frequency testing of small structural elements such as turbine blades, to 
hundreds of pounds for impactors used in testing large structures. In any given 
measurement situation there is a limit to the weight of the impactor beyond which multiple 
impacts cannot be avoided. This limit is a function of the inertia of the impactor and the 
response of the structure.  

In most cases the impactor is in the shape of a hammer and the impacting is done by hand. 
Figure 17 shows a collection of impact hammers and tips that are applicable to a wide range 
of structures. Figures 18a and 18b show the  

 

frequency spectra of the force impulse produced with a hammer with different tips and with 
mass added to the hammer.  



The magnitude and time duration of the force pulse depend on the dynamic characteristics 
of the structure at the impact location as well as the hammer characteristics. For example it 
may be impossible to excite a weak structure such as thin sheetmetal with a sufficiently 
short duration impulse and still maintain the desired force magnitude using an impactor. 
The manner in which the impactor is applied to the structure also affects the magnitude and 
width of the pulse. It is important that there be moderate consistency in the impact from 
one sample to the next to insure that the proper frequency content of the force pulse is 
maintained and that the maximum signaltonoise ratio is achieved without instrumentation 
overload.  

Measurement Transducers. At least two transducers are required to obtain calibrated 
frequency response measurements: a force transducer and a response transducer. Triaxial 
measurements, of course, require three response transducers. The force transducer may 
either be part of the impactor or be mounted directly onto the structure under test. If the 
force transducer is mounted on the structure, then its massloading effects on the structure 
must be accounted for. If it is mounted on the impactor, then it is necessary to calibrate the 
impactor/transducer combination because the actual sensitivity of the transducer on the 
impactor can vary from its independent sensitivity by as much as 30% due to the impactor 
tip characteristics. Calibration of impactors is discussed in detail in the Appendix. The 
response transducers used in impact testing are usually accelerometers, but any suitable 
response transducer may be used. Displacement probes and microphones are sometimes 
used when transducer contact with the structure is undersirable.  

Signal Conditioning Equipment. The signal condition equipment consists of the 
appropriate transducer amplifiers and the lowpass filters required to prevent aliasing errors. 
Linearity of this equipment is important because of the nature of the force and response 
signals, but the two characteristics of special importance in impact testing are their signalto-
noise ratios and their response to overloads. The importance of low measurement noise has 
already been discussed. The response to overloads is important because it is desirable to 
have the amplitude of the force and response signals as high as possible relative to the 
input range of the equipment in order to minimize noise, and variations in the impacting can 
frequently cause overloading. It is essential, therefore, that overloads be recognizable in the 
output signals. Some charge amplifiers have multiple amplifier stages with characteristics 
such that if the input stage is overloaded the succeeding stages give the signal a nearly 
normal, unclipped appearance, making it very difficult to detect overloads. This can lead to 
very poor estimates of frequency response.  

Antialias filters can also disguise overloads. For this reason it is good practice to bypass the 
filters and examine the signals for overloads with the analyzer set on its maximum 
frequency range when preparing for a test.  

Analysis System. The analyzer consists of analogtodigital converters and a system for 
performing a discrete finite Fourier transformation and the subsequent averaging and data 
manipulation required to compute the frequency response and coherence functions. The 
dynamic range of the analogtodigital converters is determined by the number of bits in the 
digital code used in the conversion process. Most converters in common use have sufficient 
dynamic range for the impulse technique, but it is important that the input range of the 
converter be properly set for the force and response signals in order to keep the digitizer 
noise to a minimum.  



 

 



 

There are several types of analysis systems being used today for frequency response 
testing. One type of system utilizes time sharing access to a large central computer to 
perform part or all of the Fourier transformation and data manipulation tasks. Other types 
of analyzers perform all Fourier transformation and data manipulation on site, either in a 
hardwired system or a dedicated minicomputer. Any of these various types of systems can 
be used in the impulse technique The speed and accuracy of the analysis depends on the 
particular characteristics of'the system. For general use in impact testing it is very desirable 
that the system have zoom transform capability and be able to apply the appropriate 
sample windows to the data. It is also desirable that the analyzer have analytical curve 
fitting capability in order to handle data with high measurement noise and assist in 
extracting modal parameters from measured data  



Measurement Procedures  

Equipment Calibration and Set Up. The first step is to assemble the proper signal 
conditioning and analysis equipment as discussed above. Next, the impactor and the force 
and response transducers are selected. Then, with the antialias filters bypassed and the 
analyzer set at a high enough frequency range to avoid aliasing errors, the mass and tip 
hardness of the impactor are varied to give the desired magnitude and duration of the force 
pulse at all test locations on the structure. The impactor is then calibrated using procedures 
outlined in a subsequent section. Next, the input ranges of all signal conditioning and 
analysis equipment are set to achieve the maximum signaltonoise ratio without overloading.  

Frequency Response Testing. The first step in the testing program is to make frequency 
response measurments at a number of locations on the structure so that the important 
resonances can be identified. It may be desirable to make estimates of modal damping 
values at this time in addition to determining the important resonance frequencies. 
Analytical curve fitting routines are sometimes helpful for these tasks.  

The next step is to determine the location or locations to be used for the stationary 
transducer during the mode  



 

shape analyses. locations can be determined from the initial frequency response 
measurements. In impact testing, the response transducer is usually the stationary one and 
the impact is applied at suitable locations on the structure to define the resonance mode 
shapes.  

It is good practice to monitor the force signal throughout the test program to reject poor 
measurements. One problem to look for, of course, is signal overload. Another cause for 
rejection is multiple impacts within a data sample. Multiple impacts sometimes occur, for 
example, when testing when lightly damped structures that bounce back against the 
impactor before it can be drawn away after the initial impact. Multiple impacts should be 
avoided because the resulting frequency spectrum will have zeros due to the periodic nature 



of the signal. In other words, very low levels of force will occur at certain frequencies, with 
resulting poor signaltonoise ratio at those frequencies. Further errors are introduced when 
sample windows are applied to multiple impact data because the windows as a single-
impulse form.  

The coherence function is also helpful in monitoring the quality of the frequency response 
measurements. It was pointed out previously that the number of averages used in the 
impulse technique was not sufficient in most cases to significantly reduce the crossspectrum 
bias error. However, noncoherent noise in the measured signals will increase the variance of 
the coherence function, giving it a "noisy" appearance. This effect is illustrated in Figure 19, 
where the noise effects are apparent in the coherence funcin the vicinity of the anti-
resonance frequencies. This is due to the low level of the response signal at the anti-
resonances and the correspondingly reduced signaltonoise ratio.  

For each frequency response measurement the appropriate signal processing techniques are 
used to reduce the effects of noise and to achieve the desired frequency resolution. For 
mode shape analysis some type of curve fitting may be required in some cases to extract 
the modal coefficients. Common practice with the impulse technique, however, is to use the 
quadrature (imaginary) component of the frequency response to compute the mode shapes. 
as this gives satisfactory results in most cases.  

 

Examples  

Example No. 1. This example compares the results of frequency response measurements 
made with the impulse technique and the more traditional sweptsine technique. The 
measurements were made on a milling machine to determine the frequency response 
between the workpiece and the cutting tool. For the impact tests the force was applied to 
the workpiece and the relative response between the workpiece and the cutting tool was 
measured. The analysis was performed using a digital Fourier analyzer. For the sweptsine 
tests a hydraulic exciter was used to apply a force between the tool and the workpiece and 
the absolute motion of the workpiece was measured. This analysis was performed on an 
analog transfer function analyzer. The resulting frequency response measurements are 
shown in Figure 20, and it is seen that there is very good agreement between the results 
produced with the two methods.  

The frequency response measurement using the impulse technique was based on only one 
impact, and the impact and analysis took only about two seconds to complete. This 
compares to a minimum often minutes required to perform the sweptsine analysis. 



Additional time savings were realized in the test set up. For the impact test no fixturing or 
elaborate exciter system was required. It was, however, necessary to insure that all 
backlash had been taken up in the milling machine. This was achieved by impacting the 
machine several times before making the measurement impact.  

Example No. 2. The impulse technique can often be used to measure the frequency 
response of an operating system. This is usually not possible with other techniques because 
of the transducer and exciter fixturing that must be attached to the structure. This example 
discusses the application of the impulse technique to the frequency response analysis of a 
grinder.  

An aluminum disc was manufactured and installed to  

 

 

simulate the grinding wheel. The problem of applying a purely radial impact to the rotating 
wheel was solved by suspending a light teflon flap such that it rode on the periphery of the 
aluminum disc. When the disc was impacted, the radial impulse was transferred to the disc 
while the teflon flap prevented any tangential component from being transmitted to the 
rotating disc. A displacement probe was mounted on the nonrotating workpiece to measure 
the relative motion between the grinding wheel and the workpiece. The frequency response 
was measured for the grinder both with the spindle rotating and with it stationary. The 



resulting frequency response measurements are shown in Figure 21. This figure clearly 
shows the effect of the hydrodynamic spindle on the system response.  

Summary  

The impulse technique is generally the fastest and easiest method of exciting a structure for 
frequency response testing. In some cases it is the only practical method of exciting a 
structure. However, the particular characteristics of the resulting force and response signals 
often lead to serious noise and signal truncation problems that require special signal 
processing techniques to overcome. Also, the impulse technique is illsuited for frequency 
response testing of highly nonlinear structures and certain other types of structures.  

The major use of the impulse technique is in problems where moderately accurate estimates 
of modal parameters and mode shapes will suffice. This includes a wide range of structural 
dynamics problems involving fatigue failures, vibration, and noise. It generally does not 
produce results of sufficient accuracy for use in developing system simulation models.  

As people involved in structural frequency response testing develop confidence in applying 
the impulse technique, it is expected to become the most widely used excitation technique.  
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