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ABSTRACT 

A technique for identifying the modal properties of an elastic structure in a testing 
laboratory is presented. The technique is based upon the use of digital processing and the 
fast Fourier transform (FFT) to obtain transfer function data, and then the use of a least 
squared error estimator to identify modal properties from the transfer function data. Both 
analytical and experimental results are presented. 

INTRODUCTION 

In recent years the implementation of the fast Fourier transform (FFT) in low cost mini-
computer systems has provided the environmental testing laboratory with a faster and more 
powerful tool for acquisition and analysis of vibration data. from mechanical structures. The 
results are used by analysts and designers alike as an aid to better understanding and 
improving mechanical designs. 

In this paper an analytical technique is presented which as been implemented in a Fourier 
Analyzer to provide modal data on site in a testing laboratory. The technique is based upon 
the application of a least squares estimator to measured transfer function data. During the 
process the natural frequencies, damping factors, and mode shapes of all the predominant 
modes of vibration of a structure are identified.  

A brief review of the modal theory and a derivation of the analytical form used in the 
estimation process are given in the following section. Following that is a discussion of how 
parameters are obtained from a single transfer function, and some experimental results are 
given. Lastly the global nature of a mode is discussed and verified with experimental 
results. 

MODAL THEORY 

Assume that an elastic system has ndegrees of freedom and that its motion can be 
adequately described by nlinear differential equations with constant coefficients. written as 

M d2x(t)/dt2 + C dx/dt(t) + Kx(t) = ft) (1) 

where x(t) and f(t) are displacement and force nvectors respectively, and M, C, and K are 
real symmetric matrices. M is called the mass matrix, C the damping matrix, and K the 
stiffness matrix. 

Taking the Laplace transform of equation (1) gives 

 



where X(s) <> x(t) and F(s) <> f(t) are vector Laplace transform pairs. B is defined as the 
(n x n) system matrix. Eq. (2) is often referred to as an expression of the dynamic flexibility 
of the structure. 

Eigenvectors (yk) and eigenvalues ( ) of the matrix can be defined in the usual way, i.e. to 
satisfy the equation 

 

where yk is an nvector and is a constant. The system Matrix B has (n) eigenvalues and 
(n) eigenvectors; each eigenvaluevector pair is defined by equation (3). 

It is straightforward to show that the yk eigenvectors are orthogonal, provided all values 
are different, as follows: 

For two different eiqenvalues (k) and (j) 

 

Note that equation (5) can be rewritten as 

 

since B is symmetric. (The superscript t denotes the transpose operation.) Premultiplying 
equation (4) by yt

j. and post multiplying equation (6) by yk 

so  

 

Thus for not equal , yt
j yk = 0 which defines orthogonality between two eigenvectors. 

As usual, the eigenvalues can be expressed as roots of the determinant  

 

where I is an (n x n) identity matrix, and  

each value can be found by solving the polynomial equation defined by (9).  



We define a transformation matrix as 

 

where the n columns of are the eigenvectors yk. We also define a diagonal matrix of 
eigenvalues as 

 

Then, the above definition of eigenvalues and eigenvectors can be expressed in matrix form 
as  

 

By defining the generalized inverse of as  

equation (12) can be rewritten as  

 

 

If the eigenvectors are normalized to unit magnitude, so that = I, then = . In any 
case, is an (n x n) diagonal form of B. The general form Dt BD is called a congruence 
transformation, and if the columns of D are orthogonal (so that -DtD is diagonal), it is called 
an orthogonal transformation. Thus,  

B = represents an orthogonal diagonalization of B. If the eigenvalues of B are 
unique, then the eigenvectors are also unique except for an arbitrary normalization 
constant, so this orthogonal diagonalization of B must be unique to the same extent. 

The transfer function matrix H of this linear system (1) is defined as 

 

assuming that the indicated matrix inverses exist. 

We can also write 



 

Thus, is the orthogonal diagonalization of H. which is unique except for 
normalization constants. Note that both B and H are diagonalized by the same orthogonal 
transformation. 

Recall that the elements of B are quadratic functions of s. Both the eigenvalues and the 
eigenvector components yk are generally rather complicated (usually irrational) functions of 
s. This means that the eigenvector components in the time domain are each changing in 
some complicated way with respect to one another, and that each corresponding 
eigenfunction (time domain representation of ) is a complicated time waveform. The 
only real advantage to this formulation is that each eigenvector distribution is orthogonal 
with respect to all other eigenvectors. 

It is preferable to decompose B or H into a set of time invariant vectors (independent of s), 
and put all s dependence into some diagonal representation of the system or transfer 
matrix. Practical experience indicates that this possibility exists, i.e. physical structures 
exhibit "standing wave" vibration patterns at certain frequencies, in which a "global" 
vibration mode shape is associated with each "resonant" frequency. We are further 
encouraged by the fact that the solution of the homogeneous wave equation can be 
expressed as the product of a time function and a space function. Finally the driving 
function can be decomposed into a linear combination of these homogeneous solutions, and 
the complete solution obtained in terms of linear combinations of these homogeneous 
"eigenfunctions". It should be apparent that the key to this desired decomposition of B lies 
in the solution to the homogeneous equation Bu = 0. 

It is now shown how this homogeneous equation can be solved in terms of the previously 
defined eigenvalues and eigenvectors of B. We begin by recognizing that each element of H 
= B-1 is a rational fraction in s, with denominator given by detail. Thus, the roots of this 
denominator, called the poles of H. are the values of s = sk for which det|B| = 0. These 
values of s also satisfy the above homogeneous equation Bu = 0. 

Each element of H can be expanded into a partial fraction expansion about each pole so that 
H can be written in the following form: 

 

where the ak's are matrices independent of s. Recall the representation of H in terms of 
eigenvalues and orthogonal eigenvectors. 

 

Each ak matrix can be found by multiplying H times ssk, and then setting s = sk, provided all 
Sk values are different. Thus, 

 



Recognize that there are 2n poles because each element of B is of quadratic form. Further, 
the poles generally appear in complex conjugate pairs because the elements of M, C, and K 
are real numbers, and hence each quadratic element of B has real coefficients. If poles do 
not appear in conjuqate pairs, then they must be real. 

Now, is a diagonal matrix whose elements are functions of s. Furthermore,  

 

because is similar to B (  = B ), and hence has the same eigenvalues. Thus, any 
value of s = sk which satisfies det [B] = 0, will also force one of the 's, say , to zero. 
Rewriting the eigenvector definition  

 

Thus, = 0 for either s = sk or s = s*
k , and the homogeneous solution at sk= sk is the 

original eigenvector evaluated at s = sk. Also, the solution corresponding to the conjunate 
poles 

 

Note that uk ut
k is an (n x n) symmetric (complex) matrix, while ut

k uk is a complex scalar. 



Therefore, the ak matrix is determined by a mode shape vector uk, which is simply the 
solution to the homogeneous system equation B uk = 0 for s = sk . Furthermore, each 
column of ak is this same bode shape vector (within a constant multiplier), and each row is 
the transpose of the vector. From a measurement standpoint this implies that the same 
mode shape is obtained regardless of which spatial point is excited or monitored. This 
pervasiveness of the mode shapes throughout the transfer matrix is verified with 
experimental results later in the paper. 

Returning to the partial fraction expansion of H.  

 

We can represent this summation of partial fraction terms in matrix form by defining the 
following matrices: 

 

 

is called the modal transformation matrix, and t is the transfer matrix in modal 
coordinates. Note that the columns of are not orthogonal (even though the parent 
eignevectors yk are orthogonal) because each uk is evaluated at a different value of s. 
However, the elements of are not functions of s. All of the s dependence is contained in . 
Each column of represents a normalized mode shape vector for the corresponding pole of 
H. It should be apparent that this normalization is arbitrary, and could be absorbed into the 

matrix if desired. 

As discussed previously, the poles of H usually occur in conjugate pairs, and for this case 
the mode shape vectors associated with the negative poles (lower half of splane) are simply 
the conjugates of the vectors associated with the positive poles. Thus, if 1

*, is defined as 
that (n x n) part of associated with positive poles, then of will correspond to the negative 



poles. Similarly, can be broken into two parts, 1 comprising the positive poles, and A2 
comprising the negative poles. H can then be represented  

 

or in partitioned form as  

 

Each of these submatrices is (n x n) and only 1 and 2 are functions of s. 

Define 

 

we define the modal mass as the coefficient of s2 ien the denominator of each element of H. 
However, we recognize that this coefficient is arbitrary, depending on the numerator 
normalization. Notice that Ak has the dimensions of (s.mass)-1, so the numerator should be 
normalized by dividing by something of the form AkSk. We can use the rather arbitrary 
normalization factor 



 

Notice that each element of the H matrix has a different zero in the s-plane, depending 
upon the angle of Ak and uk at each point, but the poles of each element of H are common, 
and occur at s = sk and s = sk*. 

For the special case of zero damping (ck = 0),  

called the normal mode case, we find that sk = sk* is purely imaginary. Thus, the B matrix 
becomes real symmetric, and it's eigenvalues and eigenvector components become real. 
This means that uk = uk

* , and we can show that Ak becomes purely imaginary, so Ak = Ak*. 
In this case, the numerator zero in each element of H goes to infinity, and H becomes 

 

Thus it has been shown that two transfer function forms of interest in modal analysis, 
namely the complex eigenvalueeigenvector case (eq. 34) and the normal mode case (eq. 
35) can be obtained from a more general eigenvalueeigenvector diagonalization of the 
system or transfer matrix. In the next section the identification of modal parameters from 
measured transfer function data using eq. 34 is discussed.  

IDENTIFICATION OF MODAL PARAMETERS  

The technique used to obtain the results presented here involves the curvefitting of 
analytical expression (34) to a set of measured transfer function data. The curve fitting is 
performed in a manner which minimizes the squared difference between the complex data 
and the complex valued analytical function form, i.e. a least squared error estimate of the 
data is determined. 

Recall that according to the modal theory, only one row or one column of the transfer 
matrix need be measured since all other rows and columns contain redundant information. 
During the process of determining the least squared estimator for the transfer matrix, 
complex values of Sk and the residues of one column or one row of the transfer matrix H for 
all predomenant modes of vibration are determined. 



For example, the qth column of H would  

have the residues 

 

After measuring these n residues of H, we form the sum of the squares of these numbers 
giving 

 

Taking the square root, and normalizing the measured residues by this quantity gives 

,  

which are the elements of the normalized mode shape vector. The Ak coefficients are readily 
found from any residue of Hpq by dividing by the product of the pth and qth components of 
the normalized mode shape vector. The modal system parameters (mass, stiffness, 
damping) are obtained from Ak and sk, and the mode shape is given by the uk vectors 
(generally normalized by  

.  

The pole location of mode (k) in the splane, also called the complex frequency, can be 
written in terms of the coordinates 

 

is called the damping factor and wk the natural frequency of mode (k). Other related and 
commonly used terms are the damping ratio and resonant frequencv.  

 



These terms are shown in the splane in figure (1)  

 

The experimental data was taken from the metal T-plate mounted on a foam rubber base 
shown in Figure 2.  

 

A hammer was used to provide the broad band excitation force, with a load cell attached to 
it to measure the force. An accelerometer mounted on the plate was used to measure 
responses. 

The transfer function data was obtained using a HewlettPackard 5451B Fourier Analyzer, 
and the modal parameter identification ::as performed using the HewlettPackard Modal 
Analysis Package. 

Transfer functions were measured between 22 different points evenly spaced along the 
outer periphery of the Tplate. Figure 3 shows a typical transfer function in rectangular or co-
quad form. 



 

Figure 4 shows the least squares estimate of this transfer function and Table 1 contains its 
corresponding modal parameters. These results were generated on the Fourier Analyzer 
using the Modal Package in about 30 seconds. 

 



 

A MODE AS A GLOBAL PROPERTY  

By far the most fundamental assumption of modal testing is that a mode of vibration can be 
excited from anywhere on an elastic structure, except of course along its node lines where it 
can't be excited al all. This is another way of stating the result derived earlier, i.e. that the 
same mode shape vector (scaled by a different component of itself) is contained in every 
row and column of the transfer matrix. In addition, modal frequency and damping are 
constants which can be identified in any element of the transfer matrix, i.e. any transfer 
function taken from the structure. 

It is important to recognize that this global mode shape concept implies some sort of spatial 
boundaries, beyond which vibrations will not readily propagate. Any attempt to extent B or 
H beyond these boundaries will result in singular matrices, and a breakdown of the modal 
concept. This behavior implies that B and H must be partitioned into submatrices, some of 
which will be nonsingular, and will possess well defined vibration modes. If two linear 
systems are completely isolated, then a single composite mode including both systems is 
not meaningful.  

Conversely, it is important to include enough spatial points to describe all of the vibration 
modes of interest. If some region of a bounded system is not monitored or excited, or if 
points are not chosen sufficiently close together, then some modes cannot be adequately 
represented.  

Following are the results of two separate modal tests that were performed on the Tplate. In 
test #1 the accelerometer was mounted on the bottom plate as shown in figure 2. and the 
plate was impacted with the hammer at the 22 peripheral locations. Using the Fourier 
Analyzer a transfer function was measured between each of the 22 impact points and the 
single response point (accelerometer location). Since the transfer function is the same 
between two points regardless of which one is the excitation or response point this test is 
equivalent to impacting the plate in one spot and moving the accelerometer to all 22 



positions. This reciprocity or symmetry assumption is also fundamental to modal analysis 
and is reflected in the symmetry of the system and transfer matrices. 

Test #2 was the same as test #1 except that the accelerometer was mounted at position 
#2. 

Table 2. contains the least squared estimates of the natural frequency and damping factor 
of a single mode from the 22 transfer function measurements. These are remarkably good 
when one considers that the resolution between spectral lines is 10 Hz. Working in a 
narrower bandwidth or using more data points to describe each transfer function should 
give better results. 

 



 

Table 3 contains the corresponding normalized mode shape vectors from the two tests. 

CONCLUSIONS  



The results indicate that by applying an analytical transfer function expression through least 
squares estimation to measured data from linearly behaving (small displacements) 
structures, modal parameters consistent with the theory can be obtained. The vibrations 
specialist must be continually aware however of the important assumptions necessary for 
obtaining valid modal results from test specimens. 
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