I DENTI FICATI ON OF THE MODAL PROPERTIES OF AN ELASTIC STRUCTURE FROM MEASURED TRANSFER FUNCTI ON DATA

By

Mark Richardson and Ron Potter

Abstract

A technique for identifying the modal properties of an elastic structure in a testing laboratory is presented. The technique is based upon the use of digital processing and the fast Fourier transform (FFT) to obtain transfer function data, and then the use of a least squared error estimator to identify modal properties from the transfer function data. Both analytical and experimental results are presented.

INTRODUCTION

In recent years the implementation of the fast Fourier transform (FFT) in low cost minicomputer systems has provided the environmental testing laboratory with a faster and more powerful tool for acquisition and analysis of vibration data. from mechanical structures. The results are used by analysts and designers alike as an aid to better understanding and improving mechanical designs.

In this paper an analytical technique is presented which as been implemented in a Fourier Analyzer to provide modal data on site in a testing laboratory. The technique is based upon the application of a least squares estimator to measured transfer function data. During the process the natural frequencies, damping factors, and mode shapes of all the predominant modes of vibration of a structure are identified.

A brief review of the modal theory and a derivation of the analytical form used in the estimation process are given in the following section. Following that is a discussion of how parameters are obtained from a single transfer function, and some experimental results are given. Lastly the global nature of a mode is discussed and verified with experimental results.

MODAL THEORY

Assume that an elastic system has ndegrees of freedom and that its motion can be adequately described by nlinear differential equations with constant coefficients. written as
$\left.M d^{2} x(t) / d t^{2}+C d x / d t(t)+K x(t)=f t\right)(1)$
where $x(t)$ and $f(t)$ are displacement and force nvectors respectively, and M, C, and K are real symmetric matrices. M is called the mass matrix, C the damping matrix, and K the stiffness matrix.

Taking the Laplace transform of equation (1) gives

$$
B(5) X(5)=F(5\}, B(s)=M_{5}^{7}+[5+X
$$

where $X(s)<>x(t)$ and $F(s)<>f(t)$ are vector Laplace transform pairs. B is defined as the ($\mathrm{n} \times \mathrm{n}$) system matrix. Eq. (2) is often referred to as an expression of the dynamic flexibility of the structure.

Eigenvectors (y_{k}) and eigenvalues (${ }^{\boldsymbol{\lambda} k}$) of the matrix can be defined in the usual way, i.e. to satisfy the equation

$$
B y_{k}=x_{k} y_{k} \quad \text { leksn }
$$

where y_{k} is an nvector and ${ }^{\lambda} k$ is a constant. The system Matrix B has (n) eigenvalues and (n) eigenvectors; each eigenvaluevector pair is defined by equation (3).

It is straightforward to show that the y_{k} eigenvectors are orthogonal, provided all values ${ }^{\lambda_{k}}$ are different, as follows:

For two different eiqenvalues (k) and (j)

$$
\begin{equation*}
\mathrm{E} y_{\mathrm{k}}=\lambda_{\mathrm{k}} y_{\mathrm{k}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta y_{j}=x_{j} y_{j} \tag{5}
\end{equation*}
$$

Note that equation (5) can be rewritten as

$$
\begin{equation*}
\left(B y_{j} j^{t}=y_{j}^{t} e^{t}=y_{j}^{t} e=z_{j} y_{j}^{t}\right. \tag{6}
\end{equation*}
$$

since B is symmetric. (The superscript t denotes the transpose operation.) Premultiplying equation (4) by y_{j}^{t}. and post multiplying equation (6) by y_{k}

$$
\begin{align*}
& y_{j}^{t} e y_{k}=x_{k} y_{j}^{t} y_{k}=k_{j} y_{j}^{t} y_{k} \\
& \left\{x_{k}-y_{j} y_{j}^{t} y_{k}=0\right.
\end{align*}
$$

Thus for ${ }^{\lambda_{k}}$ not equal ${ }^{{ }^{j}}{ }^{\prime}, y_{j}^{t} y_{k}=0$ which defines orthogonality between two eigenvectors. As usual, the eigenvalues ${ }^{\lambda} k$ can be expressed as roots of the determinant

$$
\begin{equation*}
\left\|E-x_{k} I\right\|=0 \tag{9}
\end{equation*}
$$

where I is an ($\mathrm{n} \times \mathrm{n}$) identity matrix, and
each value ${ }^{\lambda} k$ can be found by solving the polynomial equation defined by (9).

We define a transformation matrix as

170;
where the n columns of ${ }^{*}$ are the eigenvectors y_{k}. We also define a diagonal matrix k of eigenvalues as

$$
i=\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& n_{2} & 0 \\
& 0 & v_{n} x_{B}
\end{array}\right]
$$

Then, the above definition of eigenvalues and eigenvectors can be expressed in matrix form as

$$
\begin{equation*}
B 4=4 \lambda \tag{12}
\end{equation*}
$$

equation (12) can be rewritten as

```
E=42**
```

Slace the eigenvectors are orthogonal, if fallows
that $\phi_{\phi}{ }_{\phi}$ is $\{\pi \times n\}$ diagonal with elements y_{k}^{2}.

If the eigenvectors are normalized to unit magnitude, so that $\phi^{t} \phi=1$, then $\boldsymbol{q}^{t} \mathrm{~B} *=\lambda$. In any case, $\boldsymbol{q}^{t}{ }^{t h}$ is an ($n \times n$) diagonal form of B. The general form $D^{t} B D$ is called a congruence transformation, and if the columns of D are orthogonal (so that - $D^{t} D$ is diagonal), it is called an orthogonal transformation. Thus,
$q^{t} B \Phi=q^{t} \Phi \lambda$ represents an orthogonal diagonalization of B. If the eigenvalues of B are unique, then the eigenvectors are also unique except for an arbitrary normalization constant, so this orthogonal diagonalization of B must be unique to the same extent.

The transfer function matrix H of this linear system (1) is defined as

$$
H=3^{-1}=4 x^{-}: \phi^{-1}
$$

assuming that the indicated matrix inverses exist.
We can also write

Thus, $a^{t} * \lambda^{-1}$ is the orthogonal diagonalization of H. which is unique except for normalization constants. Note that both B and H are diagonalized by the same orthogonal transformation.

Recall that the elements of B are quadratic functions of s. Both the eigenvalues ${ }^{\lambda} k$ and the eigenvector components y_{k} are generally rather complicated (usually irrational) functions of s. This means that the eigenvector components in the time domain are each changing in some complicated way with respect to one another, and that each corresponding eigenfunction (time domain representation of $a^{t} \lambda^{-1}$) is a complicated time waveform. The only real advantage to this formulation is that each eigenvector distribution is orthogonal with respect to all other eigenvectors.

It is preferable to decompose B or H into a set of time invariant vectors (independent of s), and put all s dependence into some diagonal representation of the system or transfer matrix. Practical experience indicates that this possibility exists, i.e. physical structures exhibit "standing wave" vibration patterns at certain frequencies, in which a "global" vibration mode shape is associated with each "resonant" frequency. We are further encouraged by the fact that the solution of the homogeneous wave equation can be expressed as the product of a time function and a space function. Finally the driving function can be decomposed into a linear combination of these homogeneous solutions, and the complete solution obtained in terms of linear combinations of these homogeneous "eigenfunctions". It should be apparent that the key to this desired decomposition of B lies in the solution to the homogeneous equation $\mathrm{Bu}=0$.

It is now shown how this homogeneous equation can be solved in terms of the previously defined eigenvalues and eigenvectors of B. We begin by recognizing that each element of H $=\mathrm{B}^{-1}$ is a rational fraction in s , with denominator given by detail. Thus, the roots of this denominator, called the poles of H . are the values of $s=s_{k}$ for which det $|\mathrm{B}|=0$. These values of s also satisfy the above homogeneous equation $\mathrm{Bu}=0$.

Each element of H can be expanded into a partial fraction expansion about each pole so that H can be written in the following form:

$$
\begin{equation*}
H=\sum_{k=1}^{2 n} \frac{a_{k}}{s-s_{k}} \tag{17}
\end{equation*}
$$

where the a_{k} 's are matrices independent of s. Recall the representation of H in terms of eigenvalues and orthogonal eigenvectors.

$$
\begin{equation*}
H=0 x^{-}: f^{-1} \tag{18}
\end{equation*}
$$

Each a_{k} matrix can be found by multiplying H times ss_{k}, and then setting $\mathrm{s}=\mathrm{s}_{\mathrm{k}}$, provided all S_{k} values are different. Thus,

$$
\begin{equation*}
a_{k}=\left[\hat{-}\left(s-5_{k}\right) A^{-2} \phi^{-l}\right]_{5 * 5} \tag{19}
\end{equation*}
$$

Recognize that there are $2 n$ poles because each element of B is of quadratic form. Further, the poles generally appear in complex conjugate pairs because the elements of M, C, and K are real numbers, and hence each quadratic element of B has real coefficients. If poles do not appear in conjuqate pairs, then they must be real.

Now, ${ }^{-1}$ is a diagonal matrix whose elements are functions of s. Furthermore,

$$
\begin{equation*}
\operatorname{det}[B]=\operatorname{det}[A]=\ddot{n}_{n \times 1} \lambda_{k} \tag{20}
\end{equation*}
$$

because $\lambda_{\text {is similar to }} B\left(\lambda={ }^{-1} B^{\phi}\right)$, and hence has the same eigenvalues. Thus, any value of $s=s_{k}$ which satisfies $\operatorname{det}[B]=0$, will also force one of the $\lambda^{\prime} s$, say ${ }^{h} k$, to zero. Rewriting the eigenvector definition

$$
\begin{equation*}
E y_{k}=\lambda_{k} y_{k} \tag{21}
\end{equation*}
$$

it is clear that $E u_{k}=0$ imolies that $s=s_{k}$,
$x_{k}=0$ and $u_{k}=y_{k}\left\{s_{k}\right\}$
Conjugating this honogenenus equation gives
$\mathrm{B}^{*} \mathrm{u}_{k}{ }^{*}=0$, for which $\mathrm{s}^{2}=\mathrm{s}_{\mathbf{k}}{ }^{*}$, and $\lambda_{k}=0$ as before.
Alsa

$$
\begin{equation*}
u^{*}=y_{k}\left\{s_{k}^{*}\right] . \tag{23}
\end{equation*}
$$

Thus, ${ }^{{ }^{k}} \mathbf{k}=0$ for either $s=s_{k}$ or $s=s^{*}{ }_{k}$, and the homogeneous solution at $s^{k}=s_{k}$ is the original eigenvector evaluated at $s=s_{k}$. Also, the solution corresponding to the conjunate poles


```
is the con.jugate of tole solut.fon for* s = sk.
```



```
4ggnal matrlx is - skj i- |
simce d, contajns a factor s-s, them
    [g- sk
waluf!, while all other terins of the a matrix
{which do not contelm s = sk becadse the "k walues
```



```
only brie rom-zero elememt in the f matrix,
whose value is {\frac{5-5j}}{3k}\mp@subsup{|}{5}{5}=5k
of this, the expressidm for a, involurze only the
k
```



```
*--* = T\, Thus,
```


Note that $u_{k} u_{k}^{t}$ is an ($n \times n$) symmetric (complex) matrix, while $u_{k}^{t} u_{k}$ is a complex scalar.

Therefore, the a_{k} matrix is determined by a mode shape vector u_{k}, which is simply the solution to the homogeneous system equation $B u_{k}=0$ for $s=s_{k}$. Furthermore, each column of a_{k} is this same bode shape vector (within a constant multiplier), and each row is the transpose of the vector. From a measurement standpoint this implies that the same mode shape is obtained regardless of which spatial point is excited or monitored. This pervasiveness of the mode shapes throughout the transfer matrix is verified with experimental results later in the paper.

Returning to the partial fraction expansion of H .

We can represent this summation of partial fraction terms in matrix form by defining the following matrices:

 coordinates. Note that the columns of φ are not orthogonal (even though the parent eignevectors y_{k} are orthogonal) because each u_{k} is evaluated at a different value of s. However, the elements of θ are not functions of s. All of the s dependence is contained in ${ }^{h}$. Each column of $\bar{\xi}$ represents a normalized mode shape vector for the corresponding pole of H. It should be apparent that this normalization is arbitrary, and could be absorbed into the ${ }^{\prime}$ 'matrix if desired.

As discussed previously, the poles of H usually occur in conjugate pairs, and for this case the mode shape vectors associated with the negative poles (lower half of splane) are simply the conjugates of the vectors associated with the positive poles. Thus, if $\varepsilon_{1}{ }^{*}$, is defined as that ($n \times n$) part of ε associated with positive poles, then of will correspond to the negative
poles. Similarly, $\boldsymbol{A}_{\text {can }}$ be broken into two parts, \boldsymbol{H}_{1} comprising the positive poles, and A2 comprising the negative poles. H can then be represented
or in partitioned form as

Each of these submatrices is $(\mathrm{n} \times \mathrm{n})$ and only $\boldsymbol{\mu}_{1}$ and $\boldsymbol{\mu}_{2}$ are functions of s.
Define

$$
a_{k}=\left.\frac{\left(s-s_{k}\right)^{2}}{3_{k}}\right|_{s-s_{k}}
$$

It is easy to show that

$$
A_{k}^{*}=\left.\left\{\frac{s-s_{k}^{*}}{i_{k}}\right\}\right|_{s=s_{k}^{*}}
$$

and H can be mititer
we define the modal mass as the coefficient of s^{2} ien the denominator of each element of H . However, we recognize that this coefficient is arbitrary, depending on the numerator normalization. Notice that A_{k} has the dimensions of $(s . m a s s)^{-1}$, so the numerator should be normalized by dividing by something of the form $\mathrm{A}_{\mathrm{k}} \mathrm{S}_{\mathrm{k}}$. We can use the rather arbitrary normalization factor

$$
\begin{aligned}
& -\left\{\mu_{k} S_{k}^{*}+\mu_{k}^{*}{ }^{5} j_{k}, 50\right. \\
& \pi_{k}=\frac{1}{-\left(A_{k} s_{k}^{x}+\dot{A}_{k}^{*} S_{k}\right\}} \text {, modal mass } \\
& c_{k}=\frac{s_{k}+s_{k}^{*}}{A_{k} s_{k}+A_{k}^{+} 5_{k}} \text {, nodsi damping } \\
& k_{k}=\frac{1}{\left(\frac{A_{k}}{s_{k}}+\frac{A_{k}^{+}}{s_{k}^{t}}\right)}, \text { modal stiffress } \\
& \text { This imeflies that } s_{k}=\frac{k_{k}}{i_{k}} \text {, which is the re- }
\end{aligned}
$$

somant frequency,

Notice that each element of the H matrix has a different zero in the s-plane, depending upon the angle of A_{k} and u_{k} at each point, but the poles of each element of H are common, and occur at $s=s_{k}$ and $s=s_{k}{ }^{*}$.

For the special case of zero damping ($\mathrm{ck}=0$),
called the normal mode case, we find that $s_{k}=s_{k} *$ is purely imaginary. Thus, the B matrix becomes real symmetric, and it's eigenvalues and eigenvector components become real. This means that $u_{k}=u_{k}{ }^{*}$, and we can show that A_{k} becomes purely imaginary, so $A_{k}=A_{k}{ }^{*}$. In this case, the numerator zero in each element of H goes to infinity, and H becomes

$$
\begin{equation*}
H=\sum_{k=1}^{n} \frac{u_{k} u_{k} t}{u_{k} w_{k} w_{k}} \cdot \frac{1}{\cdot w_{k} s^{2}+k_{k}} \tag{35}
\end{equation*}
$$

Thus it has been shown that two transfer function forms of interest in modal analysis, namely the complex eigenvalueeigenvector case (eq. 34) and the normal mode case (eq. 35) can be obtained from a more general eigenvalueeigenvector diagonalization of the system or transfer matrix. In the next section the identification of modal parameters from measured transfer function data using eq. 34 is discussed.

IDENTIFICATION OF MODAL PARAMETERS

The technique used to obtain the results presented here involves the curvefitting of analytical expression (34) to a set of measured transfer function data. The curve fitting is performed in a manner which minimizes the squared difference between the complex data and the complex valued analytical function form, i.e. a least squared error estimate of the data is determined.

Recall that according to the modal theory, only one row or one column of the transfer matrix need be measured since all other rows and columns contain redundant information. During the process of determining the least squared estimator for the transfer matrix, complex values of S_{k} and the residues of one column or one row of the transfer matrix H for all predomenant modes of vibration are determined.

For example, the $\mathrm{q}^{\text {th }}$ column of H would
have the residues

$$
\left.\|_{p q}\left(5 . s_{k}\right)_{s=s_{k}}=A_{k} \frac{\Gamma u_{k p} d_{k q}}{\vdots} \frac{u_{k}^{t} d_{k}}{u_{k}}\right]=1, \ldots, \Pi
$$

After measuring these n residues of H , we form the sum of the squares of these numbers giving

$$
\begin{equation*}
\sum_{p=1}^{n}\left[A_{k} \frac{\left.u_{k p} u_{k q}\right]^{2}}{\left.u_{k}^{t} u_{k}\right\lrcorner}=A_{k}^{2} \frac{u_{k q}^{\bar{E}}}{u_{k}{ }^{t} u_{k}}\right. \tag{37}
\end{equation*}
$$

Taking the square root, and normalizing the measured residues by this quantity gives

$$
\mathrm{u}_{\mathrm{k} \cdot \mathrm{p}} / \sqrt{\mathrm{u}_{\mathrm{k}}{ }^{\mathrm{u}} \mathrm{u}_{\mathrm{k}}}
$$

which are the elements of the normalized mode shape vector. The A_{k} coefficients are readily found from any residue of $H_{p q}$ by dividing by the product of the $p^{\text {th }}$ and $q^{\text {th }}$ components of the normalized mode shape vector. The modal system parameters (mass, stiffness, damping) are obtained from A_{k} and s_{k}, and the mode shape is given by the u_{k} vectors (generally normalized by

$$
\sqrt{u_{k}^{t} u_{k}}
$$

The pole location of mode (k) in the splane, also called the complex frequency, can be written in terms of the coordinates

$$
\begin{equation*}
s_{k}=z_{k}+j_{w_{k}} \tag{38}
\end{equation*}
$$

Where

$$
o_{k}=\frac{c_{k}}{2 \pi_{k}} \quad \quad_{k}=\sqrt{\frac{k_{k}}{i},-\left(\frac{c_{k}}{m_{k}}-\frac{m_{k}}{a_{k}}\right)^{2}}
$$

[^0]These terms are shown in the splane in figure (1)

The experimental data was taken from the metal T-plate mounted on a foam rubber base shown in Figure 2.

「igure 2, Test Specimen

A hammer was used to provide the broad band excitation force, with a load cell attached to it to measure the force. An accelerometer mounted on the plate was used to measure responses.

The transfer function data was obtained using a HewlettPackard 5451B Fourier Analyzer, and the modal parameter identification ::as performed using the HewlettPackard Modal Analysis Package.

Transfer functions were measured between 22 different points evenly spaced along the outer periphery of the Tplate. Figure 3 shows a typical transfer function in rectangular or coquad form.

Figure 3. Transfer Function Data

Figure 4 shows the least squares estimate of this transfer function and Table 1 contains its corresponding modal parameters. These results were generated on the Fourier Analyzer using the Modal Package in about 30 seconds.

TARLE 1. MODAL PAPAMEFERS FROM A SINGi_E TRAMSFER
FLINET IGN
FESIDUE

MODE	$w\{\mathrm{~Hz}\}$	$0\{\operatorname{sen}\}$	MAGNT:UDE	PHASE AHEGE (DEGRES
1	305.63	10.63	1.025	166
2	455.50	7.09	. 044	5
3	782.84	29.46	3.135	179
4	$9+2.28$	35.95	2.699	359
5	968.96	14.44	. 244	171
6	1156.40	30.84	3.436	0
7	1517. 36	11.76	. 246	353
8	2190,07	50.52	7.118	360
9	2349.29	39.04	1.924	7
10	2511.58	22.79	d85	170
11	2989,90	24.39	. 198	153
12	3061.80	24.77	. 803	359
13	3287. 23	81.45	1.372	170

Figure 4. Arialytical Transfer Function

A MODE AS A GLOBAL PROPERTY

By far the most fundamental assumption of modal testing is that a mode of vibration can be excited from anywhere on an elastic structure, except of course along its node lines where it can't be excited al all. This is another way of stating the result derived earlier, i.e. that the same mode shape vector (scaled by a different component of itself) is contained in every row and column of the transfer matrix. In addition, modal frequency and damping are constants which can be identified in any element of the transfer matrix, i.e. any transfer function taken from the structure.

It is important to recognize that this global mode shape concept implies some sort of spatial boundaries, beyond which vibrations will not readily propagate. Any attempt to extent B or H beyond these boundaries will result in singular matrices, and a breakdown of the modal concept. This behavior implies that B and H must be partitioned into submatrices, some of which will be nonsingular, and will possess well defined vibration modes. If two linear systems are completely isolated, then a single composite mode including both systems is not meaningful.

Conversely, it is important to include enough spatial points to describe all of the vibration modes of interest. If some region of a bounded system is not monitored or excited, or if points are not chosen sufficiently close together, then some modes cannot be adequately represented.

Following are the results of two separate modal tests that were performed on the Tplate. In test \#1 the accelerometer was mounted on the bottom plate as shown in figure 2. and the plate was impacted with the hammer at the 22 peripheral locations. Using the Fourier Analyzer a transfer function was measured between each of the 22 impact points and the single response point (accelerometer location). Since the transfer function is the same between two points regardless of which one is the excitation or response point this test is equivalent to impacting the plate in one spot and moving the accelerometer to all 22
positions. This reciprocity or symmetry assumption is also fundamental to modal analysis and is reflected in the symmetry of the system and transfer matrices.

Test \#2 was the same as test \#1 except that the accelerometer was mounted at position \#2.

Table 2. contains the least squared estimates of the natural frequency and damping factor of a single mode from the 22 transfer function measurements. These are remarkably good when one considers that the resolution between spectral lines is 10 Hz . Working in a narrower bandwidth or using more data points to describe each transfer function should give better results.

Figure 5. Mode Shape of 305.6 Hz Mode

TABLE 2. MCDA: FREQUENCY ANE DAMFINO

TEST $\ddagger 1$ TEST $\begin{aligned} \text { मे2 }\end{aligned}$

Meas no.	Freq (Hz !	$\text { Lamping } \frac{\text { Tad }}{\text { get }}$	Freq [Hz]	Danping $\frac{\text { rad }}{\text { sec }}$
1	306.10	12.00	306.07	11.44
2	305.72	11.12	395.99	10.57
3	305.72	11.22	905.85	10.44
4	305.63	10.62	305.83	10,61
5	305.57	11.09	306.80	9.98
6	305.63	11.06	305.81	10.34
7	305.62	11.05	306.00	10.46
8	305.84	10.E1	306.48	11.09
9	305.69	9.75	306.33	11.12
15	305.65	19.00	306.24	70.79
11	305.68	9.93	3П6. 31	10.73
12	395.51	19.11	306.33	10.59
13	395.64	9.64	306.35	10.48
14	305.56	9.95	305.43	10.59
15	395.80	10.54	306.58	9.45
16	305.77	11.83	306.52	11.89
$1 /$	305.73	11.0?	306.32	11.39
18	305.72	10.89	30.5 .12	10.64
19	305.63	10.71	305.76	9.45
20	305.34	10.01	3015.02	9.98
21	305.55	9.76	3516.12	8.45
22	3 5 5.33	10.09	306.52	30.80

Table 3 contains the corresponding normalized mode shape vectors from the two tests.

The results indicate that by applying an analytical transfer function expression through least squares estimation to measured data from linearly behaving (small displacements) structures, modal parameters consistent with the theory can be obtained. The vibrations specialist must be continually aware however of the important assumptions necessary for obtaining valid modal results from test specimens.

REFERENCES

1. Foss K.A "CoOrdinates which Uncouple the Equations of Motion of Damped Linear Dynamic Systems" J. of Applied Mechanics ASME paper 57A86, 1958
2. Flannelly, W.G. McGarvey, J.H., Berman, A., "A Theory of Identification of the Parameters in the Equations of Motion of a Structure Through Dynamic Testing" paper No. C1 Symposium on Structural Dynamics, U. of Technology, Loughborough, England, March 1970
3. Thoren, A.R. "Derivation of Mass and Stiffness Matrices form Dynamic Test Data", AIAA paper 72346, 13th Structures, Structural Dynamics, and Materials Conf., San Antonio, Texas April 12, 1972
4. Hurty, W.C. and Rubinstein, M.F. "Dynamics of Structures" PrinticeHall Inc., Englewood Cliffs, N.J., 1965
5. Caughey, T.K., O'Kelly, M.E.J. "General Theory of Vibration of Damped Linear Dynamic Systems" Cal. Inst. of Tech., Dynamics Lab., Pasadena, California, J une 1963
6. Klosterman, A.L., "On the Experimental Determination and Use of Modal Representations of Dynamic Characteristics", Ph.D. Dissertation, University of Cincinnati, 1971

[^0]: ${ }^{\sigma} k$ is called the damping factor and w_{k} the natural frequency of mode (k). Other related and commonly used terms are the damping ratio and resonant frequencv.

