Control Methods
Control loop
Patented adaptive control algorithm with separate control loops dedicated to controlling the shape of the drive spectrum and overall RMS level; optimized for control speed and stability. The exponential averaging used in the control loop supports a wide range of acoustic reverberation times.

Control Performance
Dynamic range
Greater than 80 dB.

Output
Single output is pure Gaussian noise with smoothing filters and choice of Kaiser-Bessel or Half-Sine windows. Drive signal may be split via an external cross-over network (not supplied) to drive multiple horns.

Equalization accuracy
Control to within ±1.0 dB for a flat reference spectrum with 120 DOF and 90% statistical confidence ("closed wire").

Loop time
Less than 1.2 seconds typical for 4 control channels, 4 new frames per loop, 10000 Hz BW, 1600 lines, 4 spectrum averages and 120 DOF (dependent on host model).

Reference Spectrum
Definition
Easily defined by a combination of up to 100 frequency breakpoints (frequency value, PSD value) and slopes (dB/octave values).

Units
Use EU label to support common units such as Pascal²/Hz or psal²/Hz for acoustic spectra or enter directly in dB SPL (displays OASPL).

Alarm and abort limits
Independent positive and negative alarm and abort tolerances for each breakpoint.

Frequency ranges
DC to 50, 80, 100, 200, 400, 500, 800, 1K, 2K, 4K, 5K, 10K and 20K Hz.

Frequency resolution
1/n octave spacing (select n from 1 to 24).

Re-scale reference
Automatic re-scale of the reference spectrum to achieve desired overall RMS level.

Control Parameters
Multiple channel control
1 to all available channels may be selected for control (maximum 98). Control strategies include average, minimum or maximum. For average, you may designate whether or not a channel is removed from the averaging process when a control signal loss is detected.

Limit profiles
Supports driving limiting based on limit profiles entered via features described under Reference Spectrum. Overrides control, if needed.

Mode of operation
User (manual) interaction during a test or automatic "hands-free" operation.

Test duration
User defined up to 999:59:59 (h:m:s).

Degrees of freedom
User defined from 8 to 10,000.

Output level control
Automatic or manual (step up/down/full level).

Startup Parameters
Equalization start level
Selectable from -30 dB to 0.0 dB.

Time at initial level
Off or timed in seconds or loops (0 to 10,000).

Level increment
0.1 to 10 dB.

Pre-stored drive startup
Skip equalization by selecting drive from Level increment 0.1 to 10 dB. Time at initial level Off or timed in seconds or loops (0 to 10,000).

Equalization start level
Selectable from -30 dB to 0.0 dB.

Startup/shutdown rates
Independent selections; 0.1 to 50 dB/sec.

Test Automation
Microphone Calibration
Uses analyzer mode to calculate channel sensitivities for selected microphones.

Level scheduling
User defined levels, time at level, transition time to reach the level and number of cycles. User defined sequence of up to 100 independent tests run automatically.

Test scheduling

Channel Setup
Channel type
Control, auxiliary (measurement) or limit.

Transducers
Microphone or accelerometer (for auxiliary).

Coupling
Select AC, DC or ICP with 24V supply.

Sensitivity
Select as enabled or disabled (each channel). Up to 45 characters (2 labels each channel). Import from ASCII spreadsheet file or other applications.

On-Line Displays
Simultaneous displays
Up to 25 windows, each with up to 4 grids.

Waveforms per grid
Up to 4 (up to 400 on 100 grids).

Auxiliary monitor
Optional second monitor for test displays.

On-Line Analysis
Spectral functions
Control, reference, monitor, auxiliary, error and limit PSD may be displayed with FFT or 1/n octave spacing. The drive, H(f), coherence and limit number selections are displayed only with FFT spacing.

Spectra averaging
Auxiliary measurement channels processed with linear or exponential averaging and user defined DOF (separate from control loop).

Cursors
X and Y value readout, peak search, trace tagging and multi-window locked positioning.

X-scaling
Linear, log or log-1/n for 1/n octave display.

Y-scaling
Linear, log or dB (ref) for acoustic displays.

Analyzer Mode Acquisition
Functions acquired Spectra (PSD) acquired in non-control mode. Also used for microphone calibration. Averaging Select linear or exponential average and the desired DOF with 1/n octave or FFT spacing.

Host Data Storage & Review
Setup & format
Automatic timed (any level) or timed at full level or manual mode. Binary files of narrow-band data (published format) converted to UFF or Matlab formats.

Playback
Scan forward or backward through the entire test data file, with adjustable delay.

Test overlay
Select files from multiple tests for overlay.

Annotation
Test name, test time & level for each record.

Documentation
Test summary
Documented post-test summary; easily printed or incorporated into documents using standard word processing software.

Message log
Text file records all system status messages that were displayed during the test.

Automatic & batch plots
Automatic plot generation at test completion. Plot modes for sending all displays to the printer with single or multiple grids per page. Automatic conversion to UFF & Matlab format.

Throughput Disk (TPD)
General description
Supports 1-6 drives for storing all time domain data to disk during a test. Data may be replayed to recreate spectral test displays or may be replayed via Signal Analysis to also view time domain data. See separate TPD data sheet.

In keeping with our commitment to continuous product improvement, the information herein is subject to change. Copyright 2007, Spectral Dynamics Inc. All rights reserved. Acoustic0407.

www.SpectralDynamics.com