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Digital Fourier analyzers have opened a new era in structural dynamics testing. The ability 
of these systems to measure a set of structural transfer functions quickly and accurately 
and then operate on them to extract modal parameters is having a significant impact on the 
product design and development cycle. In order to use these powerful new tools effectively, 
it is necessary to have a basic understanding of the concepts which are employed. In Part I 
of this article, the structural dynamics model was introduced and used for presenting the 
basic mathematics relative to modal analysis and the representation of modal parameters in 
the Laplace domain. Part I concluded with a section describing the basic theoretical concepts 
relative to measuring transfer and coherence functions with a digital Fourier analyzer. 

Part II presents an introductory discussion of several techniques for measuring structural 
transfer functions with a Fourier analyzer. Broadband testing techniques are stressed and 
digital techniques for identifying closely coupled modes via increased frequency resolution 
are introduced. 

Certainly one of the most important areas of structural dynamics testing is the use of 
modern experimental techniques for modal analysis. The development of analytical and 
experimental methods for identifying modal parameters with digital Fourier analyzers has 
had a dramatic impact on product design in a number of industries. The application of these 
new concepts has been instrumental in helping engineers design mechanical structures 
which canymore payload, vibrate less, nun quieter, fail less frequently, and generally 
behave according to design when operated in a dynamic environment. 

Making effective measurements in structural dynamics testing can be a challenging task for 
the engineer who is new to the area of digital signal analysis. These powerful new signal 
analysis systems represent a significant departure from traditional analog instrumentation in 
teens of theory and usage. By their very nature, digital techniques require that all 
measurements be discrete and of finite duration, as opposed to continuous duration in the 
analog domain. However, the fact that digital Fourier analyzers utilize a digital processor 
enables them to offer capabilities to the testing laboratory that were unheard of only a few 
years ago. 

Modal analysis, an important part of the overall structural dynamics problem, is one area 
that has benefited tremnendously from the advent of digital Fourier analysis. The intent of 
this article is to present some of the important topics relative to understanding and making 
effective measurements for use in modal analysis. The engineer using these techniques 
needs to have a basic understanding of the theory on which the identification of modal 
parameters is based, in order to make a measurement which contains the necessary 
information for parameter extraction.  

Part I of this article introduced the structural dynamics model and how it is represented in 
the Laplace or sdomain. The Laplace formulation was used, because it provides a convenient 
model to present the definition of modal parameters and the mathematics for describing a 
mode of vibration.  



In this part, we will diverge from the mathematics and present some practical means for 
measuring structural transfer functions for the purpose of modal parameter identification. 
Unfortunately, the scope of this article does not penmit a thorough explanation of many 
factors which are important to the measurement process, such as sampling, aliasing, and 
leakage.1 Instead, we will concentrate more on different types of excitation and the 
importance of adequate frequency resolution.  

Identification of Modal Parameters: a Short Review  

In Part I we derived the time, frequency and Laplace or eplane representation of a single-
degreeoffreedom system, which has only one mode of vibration. 

The time domain representation is a statement of Newton's second law 

(1)  

This equation of motion gives the correct time domain response of a vibrating system 
consisting of a single mass, spring and damper, when an arbitrary input force is applied. 

The transfer function of the singledegreeof freedom system is derived in terms of its eplane 
representation by introducing the Laplace transform. The transfer function is defined as the 
ratio of the Laplace transform of the output of the system to the Laplace transform of the 
input. The compliance transfer function was written as  

(2)  

Finally, the frequency domain form is found by applying the fact that the Fourier transform 
is merely the Laplace transform evaluated along the jw or frequency axis of the complex 
Laplace plane. This special case of the transfer function is called the frequency response 
function written as,  

 



 

Thus, as shown in Figure 1, the motion of a mechanical system can be completely described 
as a function of time, frequency, or the Laplace variable, s. Most importantly, all are valid 
ways of characterizing a system and the choice is generally dictated by the type of 
information that is desired.  

Because the behavior of mechanical structures is more easily characterized in the frequency 
domain, especially in terms of modes of vibration we will devote our attention to their 
frequency domain descriptions.  

A mode of vibration (the kth mode) is completely described by the four Laplace parameters: 

wk, the natural frequency; , the modal damping coefficient; and the complex residue 
which is expressed as two terms, magnitude and phase. The residues define the mode 
shapes for the system. The Fourier transfom is the tool that allows us to transform time 
domain signals to the frequncy domain and thus observe the Laplace domain along the 
frequency axis. It is possible to show that the transfer function over the entire splane is 
completely determined by its values along the jw axis, so the frequency response function 
contains all of the necessary information to identify modal parameters.  

Digital Fourier analyzers, such as the one shown in Figure 2, have proven to be ideal tools 
for measuring structural frequency response functions (transfer functions) quickly and 
accurately. Coupling this with the fact that modes of vibration can be identified from 
measured frequency response functions by digital parameter identification techniques gives 
the testing laboratory an accurate and costeffective means for quickly characterizing a 
structure's dynamic behavior by identifying its modes of vibration.2  

The remainder of this article will attempt to introduce some of the techniques which are 
available for making effective frequency response measurements with digital Fourier 
analyzers.  

Measuring Structural Frequency Response Functions  

The general scheme for measuring frequency response functions with a Fourier analyzer 
consists of measuring simultaneously an input and response signal in the time domain, 
Fourier transforming the signals, and then forming the system transfer function by dividing 



the transformed response by the transformed input. This digital process enjoys many 
benefits over traditional analog techniques in terms of speed, accuracy and postprocessing 
capability.3 One of the most important features of Fourier analyzers is their ability to form 
accurate transfer functions with a variety of excitation methods. This is in contrast to 
traditional analog techniques which utilize sinusoidal excitation. Other types of excitation 
can provide faster measurements  

 

and a more accurate simulation of the type of excitation which the structure may actually 
experience in service. The only requirement on excitation functions with a digital Fourier 
analyzer is that they contain energy at the frequencies to be measured.  

The following sections will discuss three popular methods for exciting a structure for the 
purpose of measuring transfer functions; they are, random, transient, and sinusoidal 
excitation. To begin with, we will restrict our discussion to baseband measurements; i.e., 
measurements made from dc (zero frequency) to some Fmax (maximum frequency). The 
procedures for using these broadband stimuli (except transient) are all very similar. They 
are typically used to drive a shaker which, in turn, excites the mechanical structure under 
test. The general process is illustrated in Figure 3.  

Random Excitation Techniques  



In this section, three types of broadband random excitation which can be used for making 
frequency response measurements are discussed. Each one possesses a distinct set of 
characteristics which should be understood in order to use them effectively. The three types 
are: (1) pure random, (2) pseudo random, and (3) periodic random.  

Typically, pure random signals are generated by an external signal generator, whereas 
pseudo random and periodic random are generated by the analyzer's processor and output 
to the structure via a digitaltoanalog converter, as shown in Figure 3. Figure 4 illustrates 
each type of random signal.  

Pure Random  

Pure random excitation typically has a Gaussian distribution and is characterized by the fact 
that it is in no way periodic, i.e., does not repeat. Typically, the output of an independent 
signal generator may be passed through a bandpass filter in order to concentrate energy in 
the band of interest. Generally, the signal spectrum will be flat except for the filter rolloff 
and, hence, only the overall level is easily controlled.  

One disadvantage of this approach is that, although the shaker is being driven with a flat 
input spectrum, the structure is being excited by a force with a different spectrum due to 
the impedance mismatch between the structure and shaker head. This means that the force 
spectrum is not easily controlled and the structure may not be forced in the optimum 
manner. Since it is difficult to shape the spectrum because it is not generally controlled by 
the computer, some form of closedloop force control system would ideally he used. 
Fortunately, in most cases, the problem is not important enough to warrant this effort.  

A more serious drawback of pure random excitation is that the measured input and 
response signals are not periodic in the measurement time window of the analyzer. A key 
assumption of digital Fourier analysis is that the time waveforms he exactly periodic in the 
observation window. If this condition is not met, the corresponding frequency spectrum will 
contain socalled "leakage" due to the nature of the discrete Fourier transform; that is, 
energy from the nonperiodic parts of the signal will leak" into the periodic parts of the 
spectrum, thus giving a less accurate result.  

In digital signal analyzers, nonperiodic time domain data is typically multiplied by a 
weighting function such as a Hanning window to help reduce the leakage caused by non-
periodic data and a standard rectangular window.  

 



 

When a nonperiodic time waveform is multiplied by this window, the values of the signal in 
the measurement window more closely satisfy the requirements of a periodic signal. The 
result is that leakage in the spectrum of a signal which has been multiplied by a Hanning 
window is greatly reduced.  

However, multiplication of two time waveforms, i.e., the nonperiodic signal and the Hanning 
window, is equivalent to the convolution of their respective Fourier transforms (recall that 
multiplication in one domain is exactly equivalent to convolution in the other domain). 
Hence, although multiplication of a nonperiodic signal by a Hanning window reduces 
leakage, the spectrum of the signal is still distorted due to the convolution with the Fourier 
transform of the Hanning window. Figure 5 illustrates these points for a simple sinewave.  

With a pure random signal, each sampled record of data T seconds long is different from the 
preceeding and following records. (Figure 4). This gives rise to the single most important 
advantage of using a pure random signal for transfer function measurement. Successive 
records of frequency domain data can be ensemble averaged together to remove nonlinear 
effects, noise, and distortion from the measurement. As more and more averages are taken, 
all of these components of a structure's motion will average toward an expected value of 
zero in the frequency domain data. Thus, a much better measure of the linear least squares 
estimate of the response of the structure can be obtained.3  



 

This is especially important because digital parameter estimation schemes are all based on 
linear models and the premise that the structure behaves in a linear manner. Measurements 
that contain distortion will be more difficult to handle if the modal parameter identification 
techniques used are based upon a linear model of the structure's motion.  

PseudoRandom 

In order to avoid the leakage effects of a nonperiodic signal, a waveform known as pseudo 
random is commonly used. This type of excitation is easy to implement with a digital Fourier 
analyzer and its digitaltoanalog (DAC) converter. The most commonly used pseudo random 
signal is referred to as "zerovariance random noise." It has uniform spectral density and 
random phase. The signal is generated in the computer and repeatedly output to the shaker 
through the DAC every T seconds (Figure 4). The length of the pseudo random record is 
thus exactly the same as the analyzer's measurement record length (T seconds), and is 
thus exactly periodic in the measurement window. 



Because the signal generation process is controlled by the analyzer's computer, any signal 
which can be described digitally can be output through the DAC. The desired output signal is 
generated by specifying the amplitude spectrum in the frequency domain; the phase 
spectrum is normally random. The spectrum is then 

Fourier transformed to the time domain and output through the DAC. Therefore, it is 
relatively easy to alter the stimulus spectrum to account for the exciter system 
characteristics. 

In general, besides providing leakagefree measurements, a technique using pseudo random 
noise can often provide the fastest means for making a statistically accurate transfer 
function measurement when using a random stimulus. This proves to be the case when the 
measurement is relatively free of extraneous noise and the system behaves linearly, 
because the same signal is output repeatedly and large numbers of averages offer no 
significant advantages other than the reduction of extraneous noise. 

The most serious disadvantage of this type of signal is that because it always repeats with 
every measurement record taken, nonlinearities, distortion, and periodicities due to rattling 
or loose components on the structure cannot be removed from the measurement by 
ensemble averaging, since they are excited equally every time the pseudo random record is 
output. 

Periodic Random 

Periodic random waveforms combine the best features of pure random and pseudo random, 
but without the disadvantages; that is, it satisfies the conditions for a periodic signal, yet 
changes with time so that it excites the structure in a truly random manner. 

The process begins by outputting a pseudo random signal from the DAC to the exciter. After 
the transient part of the excitation has died out and the structure is vibrating in its steady-
state condition, a measurement is taken; i.e., input, output, and cross power spectrums are 
formed. Then, instead of continuing to output the same signal again, a different 
uncorrelated pseudo random signal is synthesized and output (refer again to Figure 4). This 
new signal excites the structure in a new steadystate manner and another measurement is 
made. 

When the power spectrums of these and many other records are averaged together, non-
linearities and distortion components are removed from the transfer function estimate. 
Thus, the ability to use a periodic random signal eliminates leakage problems and ensemble 
averaging is now useful for removing distortion because the structure is subjected to a 
different excitation before each measurement. 

The only drawback to this approach is that it is not as fast as pseudo random or pure 
random, since the transient part of the structure's response must be allowed to die out 
before a new ensemble average can be made. The time required to obtain a comparable 
number of averages may be anywhere from 2 to 3 times as long. Still, in many practical 
cases where a baseband measurement is appropriate, periodic random provides the best 
solution, in spite of the increased measurement time.  

Sinusoldal Testing 



Until the advent of the Fourier analyzer, the measurement of transfer functions was 
accomplished almost exclusively through the use of sweptsine testing. With this method, a 
controlled sinusoidal force is input to the structure, and the ratio of output response to the 
input force versus frequency is plotted. Although sine testing was necessitated by analog 
instrumentation, it is certainly not limited to the analog domain. Sinusoidally measured 
transfer functions can be digitized and processed with the Fourier analyzer or can be 
measured directly, as we will explain here.  

In general, swept sinusoidal excitation with analog instrumentation has several 
disadvantages which severely limit its effectiveness: 

1) Using analog techniques, the low frequency range is often limited to several Hertz.  
2) The data acquisition time can be long. 
3) The dynamic range of the analog instrumentation limits the dynamic range of the 
transfer function measurements. 
4) Accuracy is often difficult to maintain. 
5) Nonlinearities and distortion are not easily coped with.  

However, sweptsine testing does offer some advantages over other testing forms:  

1) Large amounts of energy can be input to the structure at each particular frequency. 
2) The excitation force can be controlled accurately.  

Being able to excite a structure with large amounts of energy provides at least two benefits. 
First, it results in relatively high signaltonoise ratios which aid in determining transfer 
function accuracy and, secondly, it allows the study of structural nonlinearities at any 
specific frequency, provided the sweep frequency can be manually controlled.  

Sine testing can become very slow, depending upon the frequency range of interest and the 
sweep rate required to adequately define modal resonances. Averaging is accomplished in 
the time domain and is a function of the sweep rate.  

A sinusoidal stimulus can be utilized in conjunction with a digital Fourier Analyzer in many 
different ways. However, the fastest and most popular method utilizes a type of signal 
referred to as a "chirp." A chirp is a logarithmically swept sinewave that is periodic in the 
analyzer's measurement window, T. The swept sine is generated in the computer and 
output through the DAC every T seconds. Figure l0G shows a chirp signal. The important 
advantage of this type of signal is that it is sinusoidal and has a good peaktorms ratio. This 
is an important consideration in obtaining the maximum accuracy and dynamic range from 
the signal conditioning electronics which comprise part of the test setup. Since the signal is 
periodic, leakage is not a problem. However, the chirp suffers the same disadvantage as a 
pseudo random stimulus; that is, its inability to average out nonlinear effects and distortion. 

Any number of alternate schemes for using sinusoidal excitation can be implemented on a 
Fourier analyzer. However, they will not be discussed here because they offer few, if any, 
advantages over the chirp and, in fact, generally serve to make the measurement process 
more tedious and lengthy.  

Transient Testing  



As mentioned earlier, the transfer function of a system can be determined using virtually 
any physically realizable input, the only criteria being that some input signal energy exists 
at all frequencies of interest. However, before the advent of minicomputerbased Fourier 
analyzers, it was not practical to determine the Fourier transform of experimentally 
generated input and response signals unless they were purely sinusoidal.  

These digital analyzers, by virtue of the fast Fourier transform, have allowed transient 
testing techniques to become widely used. There are two basic types of transient tests: (1) 
Impact, and (2) Step Relaxation.  

Impact Testing  

A very fast method of performing transient tests is to use a handheld hammer with a load 
cell mounted to it to impact the structure. The load cell measures the input force and an 
accelerometer mounted on the structure measures the response. The process of measuring 
a set of transfer functions by mounting a stationary response transducer (accelerometer) 
and moving the input force around is equivalent to attaching a mechanical exciter to the 
struck ture and moving the response transducer from point to point. In the former case, we 
are measuring a row of the transfer matrix whereas in the latter we are measuring a 
column.2  

In general, impact testing enjoys several important advantages:  

1) No elaborate fixturing is required to hold the structure under test. 
2) No electromechanical exciters are required. 
3) The method is extremely fast-often as much as 100 times as fast as an analog sweptsine 
test.  

However, this method also has drawbacks. The most serious is that the power spectrum of 
the input force is not as easily controlled as it is when a mechanical shaker is used. This 
causes nonlinearities to be excited and can result in some variablity between successive 
measurements. This is a direct consequence of the shape and amplitude of the input force 
signal.  

The impact force can be altered by using a softer or harder hammer head. This, in turn, 
alters the corresponding power spectrum. In general, the wider the width of the force 
impulse, the lower the frequency range of excitation. Therefore, impulse testing is a matter 
of tradeoffs. A hammer with a hard head can be used to excite higher frequency modes, 
whereas a softer head can be used to concentrate more energy at lower frequencies. These 
two cases are illustrated in Figures 6 and 7.  

Since the total energy supplied by an impulse is distributed over a broad frequency range, 
the actual excitation  



 

energy density is often quite small. This presents a problem when testing heavily damped 
structures, because the transfer function estimate will suffer due to the poor signaltonoise 
ratio of the measurement. Ensemble averaging, which can be used with this method, will 
greatly help the problem of poor signaltonoise ratios. 

Another major problem is that of frequency resolution. Adequate frequency resolution is an 
absolute necessity in making good structural transfer function measurements. The 
fundamental nature of a transient response signal places a practical limitation on the 
resolution obtainable. In order to obtain good frequency resolution for quantifying very 
lightly damped resonances, a large number of digital data points must be used to represent 
the signal. This is another way of saying that the Fourier transform size must be large, since  

 

Thus, as the response signal decays to zero, its signalto-ratio becomes smaller and smaller. 
If it has decayed to a small value before a data record is completely filled, the Fourier 
transform will be operating mostly on noise, therefore causing uncertainties in the transfer 
function measurement. Obviously, the problem becomes more acute as higher frequency 
resolutions are needed and as more heavily damped structures are tested. Figure 8 
illustrates this case for a simple singledegreeoffreedom system. In essence, frequency 
resolution and damping form the practical limitations for impulse testing with baseband (dc 
to Fmax) Fourier analysis.  

Since a transient signal may or may not decay to zero within the measurement window, 
windowing can be a serious problem in many cases, especially when the damping is light 
and the structure tends to vibrate for a long fume. In these instances, the standard 
rectangular window is unsatisfactory because of the severe leakage. Digital Fourier 



analyzers allow the user to employ a variety of different windows which will alleviate the 
problem. Typically, a Hanning window would be unsuitable because it destroys data at the 
first of the record-the most important part of a transient signal. The exponential window can 
be used to preserve the important information in the waveform while at the same time 
forcing the signal to become periodic. It must, however, be applied with care, especially 
when modes are closely spaced, for exponential smoothing can smear modes together so 
that they are no longer discernible as separate modes. Reference 4 explains this in more 
detail.  

In spite of these problems, the value of impact testing for modal analysis cannot be 
overstressed.  

 

It provides a quick means for troubleshooting vibration problems. For a great many 
structures an impact can suitably excite the structure such that excellent transfer function 
measurements can be made. The secret of its success rest with the user and his 
understanding of the physics of the situation and the basics of digital signal processing.  

Step Relaxation Testing  

Step relaxation is another form of transient testing which utilizes the same type of signal 
processing techniques as the impact test. In this method, an inextensible, lightweight cable 
is attached to the structure and used to pre.load the structure to some acceptable force 
level. The structure "relaxes" with a force step when the cable is severed, and the transient 
response of the structure, as well as the transient force input, are recorded.  

Although this type of excitation is not nearly as convenient to use as the impulse method, it 
is capable of putting a great deal more energy into the structure in the low frequency range. 
It is also adaptable to structures which are too fragile or too heavy to be tested with the 
handheld hammer described earlier. Obviously, step relaxation testing will also require a 
more complicated test setup than the impulse method but the actual data acquisition time is 
the same. 

Testing a Simple Mechanical System 



A singledegreeoffreedom system was tested with each type of excitation method previously 
discussed. Besides measuring the linear characteristics of the system with each excitation 
type, gross nonlinearity was simulated by clipping approximately onethird of the output 
signal. This condition simulates a "hard stop" in an otherwise unconstrained system. The 
intent ot these tests was to show how certain forms of excitation can be used to measure 
the linear characteristics of a system with a large amount of distortion. This is extremely 
important to the engineer who is interested in identifying modal parameters.  

Figure 9 illustrates the form of each type of stimulus and its power spectrum after fifteen 
ensemble averages. Notice that the input power spectrums for both the pure random and 
periodic random cases have more variance than the others. This is because each ensemble 
average consisted of a new and uncorrelated signal for these two stimuli. The pseudo 
random and swept sine (chirp) signals were controlled by the analyzer's digitaltoanalog 
converter and each ensemble average was in fact the same signal, thus resulting in zero 
variance. In this test, the transient signal was also controlled by the DAC to obtain recordto-
record repeatability and resulting zero variance. In all cases, the notching in the power 
spectrums is due to the impedance mismatch between the structure and the shaker. A final 
interesting note is that all spectrums except the swept sine are flat out to the cutoff 
frequency. The rolloff of the swept sine spectrum is due to the logarithmic sweep rate. Thus, 
the spectrum has reduced energy density as the frequency is increased. 

Recall that in Part I we discussed the use of the coherence function to assess the quality of 
the transfer function measurement. In Figure 10, the results obtained from testing the 
singledegreeoffreedom system with and without distortion are shown. In Figures 10A and 
10B, the cases for pure random excitation, notice that the coherence is noticeably different 
from unity in the vicinity of the resonance. This is due to the nonperiodicity of the signals 
and the  



 

fact that Hanning windowing was used to reduce what would have otherwise been even 
more severe leakage. The leakage effect is much more sensitive here, due to the sharpness 
of the resonance, i.e., the rate of change of the function. Although the effect is certainly 
present throughout the rest of the band, the relatively small changes in response level 



between data points away from the resonance will obviously tend to minimize the leakage 
from adjacent channels. Although any number of different windowing functions could have 
been used, the phenomenon would still exist.  

Figures 10C10J show the results of testing the system with the other excitation forms. In all 
figures showing the distorted case, the best fit of a linear model to the measured data is 
also shown. The coherence is almost exactly unity for the linear cases shown in Figures l0C. 
E, G and I. This is because all are ideally leakagefree measurements because they are 
periodic in the analyzer's measurement window. For the cases with distortion, the latter 
three show very good coherence even though the system output was highly distorted. This 
apparently good value of coherence is due to the nature of the zero-variance periodic 
signals used as stimuli. In cases l0B and l0D, the measurements are truly random from 
average to average and the coherence is more indicative of the quality of the measurement. 
The low coherence values at the higher frequencies are primarily a result of the poor signal 
energy available. The conclusion is that the coherence function can be misleading if one 
does not understand the measurement situation.  

 

 

Even though the system was highly distorted, it is apparent that the pure random and 
periodic random stimuli provided the best means for transfer function measurements, as 
seen in Figures l0B and l0D. Again, this is due to their ability to effectively use ensemble 
averaging to remove the distortion components from the measurement. The distortion 
cannot be removed using the other types of periodic stimuli and this is evident in Figures 



l0F, H and J. The results obtained from fitting a liner model to the measured data are given 
in Table I.  

In all cases where the linear motion was measured, each type of excitation gave excellent 
results, as indeed they should. The one item worthy of mention is the estimate of damping 
with the pure random result. In this case, the value is about 7% higher than the correct 
value. This error is due to the windowing effect on the data. In this test, a Hanning window 
was used. However, any number of other windows could have been used and error would 
still be present. Further evidence of the Hanning effect on the data is shown by the error 
between the linear model and the measured data.  

Of considerable importance is the data for the simulated distortion. The primary conclusion 
that can be drawn from these data is that the periodic random stimulus provides a good 
means for measuring the linear response of a linear system and is clearly superior to a pure 
random stimulus. It is also the best possible excitation for measuring the linear response of 
a system with distortion. Evidence of this is seen in the quality of the parameter estimates 
in Table I and the relative error (the error index between the ideal linear model and the 
measured data). The principal characteristics of each type of excitation are summarized in 
Table II.  

Increasing Frequency Resolution  

Certainly the single most important factor affecting the accuracy of modal parameters is the 
accuracy of the transfer function measurements. And, in general, frequency resolution is the 
most important parameter in the measurement process. In other words, it is simply not 
possible to extract the correct values of the modal parameters when there is inadequate 
information available to process. Modern curve fitting algorithms are highly dependent on 
adequate resolution in order to give correct parameter estimates, including mode shapes. 

In this section we will introduce Band Selectable Fourier Analysis (BSFA), the socalled 
"zoom" transfonn. BSFA is a measurement technique in which the Fourier transform is 
performed over a frequency band whose lower and upper limits are independently 
selectable. This is in contrast to standard baseband Fourier analysis, which is always 
computed over a frequency range from zero frequency to some maximum frequency, Fmax. 
From a practical viewpoint, in many complex structures, modal density is so great, and 
modal coupling (or overlap) so strong, that increased frequency resolution over that 
obtainable with baseband techniques is an absolute necessity for achieving reliable results. 

In the past, many digital Fourier Analyzers have been limited to baseband spectral analysis; 
that is, the frequency band under analysis always extends from dc to some maximum 
frequency. With the Fourier transform, the available number of discrete frequency lines 
(typically 1024 or 512) are equally spaced over the analysis band. This, in turn, causes the 

available frequency resolution to be, , where N is the Fourier transform block 
size, i.e., the number of samples describing the realtime function. There are N/2 complex 
(magnitude and phase) samples in the frequency domain. Thus, Fmax and the block size, N, 
determine the maximum obtainable frequency resolution.  

The problem with baseband Fourier analysis is that, to increase the frequency resolution for 
a given value of Fmax the number of lines in the spectrum (i.e., the block size) must 
increase. There are two important reasons why this is an inefficient way to increase the 
frequency resolution:  



1) As the block size increases, the processing time required to perform the Fourier 
transform increases. 
2) Because of available computer memory sizes, the block size is limited to a relatively 
small number of samples(typically a maximum of 4096).  

More recently, however, the implementation of BSFA has made it possible to perform 
Fourier analysis over a frequency band whose upper and lower frequency limits are 
independently selectable. BSFA provides this increased frequency resolution without 
increasing the number of spectral lines in the computer.  

BSFA operates on incoming time domain data to the analyzer's analogtodigital converter or 
time domain data that has previously been recorded on a digital mass storage device. BSFA 
digitally filters the time domain data and stores only the filtered data in memory. The 
filtered data corresponds to the frequency band of interest as specified by the user. The 
procedure is completed by performing a complex Fourier transform on the filtered data.  

Of fundamental importance is the fact that the laws of nature and digital signal processing 
also apply to the BSFA situation. Since the frequency resolution is always equal to the 
reciprocal of the observation time of the measurement, delta f = 1/T, the digital filters must 
process T seconds of data to obtain a frequency resolution of 1/T in the analysis band. 

Whereas in baseband Fourier analysis the maximum resolution is always the 

resolution with BSFA is where BW is the independently selectable bandwidth of 
the BSFA measurement. Therefore, by restricting our attention to a narrow region of 
interest below Fmax and concentrating the entire power of the Fourier transform in this 
interval, an increase in frequency resolution equal to Fmax/BW can be obtained (Figure 11). 

The other significant advantage of BSFA is its ability to increase the dynamic range of the 
measurement to 90 dB or more in many cases. The increased dynamic range of BSFA is a 
direct result of the extremely sharp rolloff and outof-band rejection of the preprocessing 
digital filters and of the increased frequency resolution which reduces the effect of the white 
quantizing noise of the analyzer's analog-todigital converter.5 Certain types of BSFA filters 
can provide more than 90 dB of outofband rejection relative to a full scale inband spectral 
line, a characteristic which is not matched by more traditional analog range translators (see 
Figure 12).  

The simple singledegreeoffreedom system which was tested with the various excitation 
types was also tested with BSFA using pure random excitation We saw that in the baseband 
case, pure random was the least desirable signal because of the associated leakage and the 
resulting distortion of the transfer function waveform introduced by the Hanning window. By 
using BSFA, leakage is no longer an important source of error because of the great increase 
in the number of spectral lines used to describe the system. Figure 13 shows the coherence 
and transfer function between 524.6 Hz and 579.6 Hz with a resolution of 0.269 Hz, an 
increase of more than 18 over the baseband result. Note that the coherence is almost 
exactly unity, indicating the  



 

 

 

absence of any error due to leakage, and confirming the quality of the BSFA measurement. 
As shown in Table I, the use of BSFA eliminates the error caused by the leakage in the 
baseband measurement. 



A Practical Problem. To illustrate the importance of BSFA, a mechanical structure was tested 
and modes in the area of 1225 Hz to 1525 Hz were to be investigated. Figure 14 is a typical 
baseband (dcFmax) transfer function measurement. It was taken with the following 
parameters:  

 

 

 



 

 

Pure random noise was used to excite the structure through an electrodynamic shaker. 

The Inadequacy of the Baseband Measurement. Note that two modes are clearly visible 
between 1225 Hz and 1525 Hz. This same measurement is shown in rectangular or co/quad 
form in Figure 15. Again, by examining the quadrature response, the two modes are seen, 
However, there is also a slight inflection in the response between these two modes which 



indicates that yet a third mode may be present. But there is insufficient frequency resolution 
to adequately define the mode.  

Returning to Figure 15, a partial display of the region between 1225 and 1525 Hz was 
made. The expanded quadrature display is shown in Figure 16. Realize that this represents 
no increase in frequency resolution, only an expansion of the plot. Clearly, only two modes 
were found.  

Accurate Measurements with BSFA. In order to accurately define the modes in this 
region, the structure was retested using Band Selectable Fourier Analysis (BSFA). All 512 
lines of spectral resolution were placed in a band from 1225 to 1525 Hz, resulting in a 
resolution of 0.610 Hz instead of 9.76 Hz, as in the baseband measurement. The quadrature 
response attained with the BSFA is also shown in Figure 16 for comparative purposes. Note 
that three modes are now clearly visible. The small (third) mode of approximately 1350 Hz 
is now well defined, whereas it was not even apparent before. In addition, the magnitude of 
the first mode at 1320 Hz is seen to be at least three times greater in magnitude than the 
result indicated by the baseband measurement. The corresponding results in log form are 
shown in Figure 17. This BSFA result was obtained by using only a 16:1 resolution 
enhancement. Enhancements of more than 100:1 are possible with BSFA.  

Implications of Frequency Resolution in Determining Modal Parameters and Mode 
Shapes. Referring again to Figure 15, we can clearly see the necessity of using adequate 
frequency resolution for making a particular measurement. In addition, it is important to 
understand how the baseband result would lead to an incorrect answer in terms of modal 
parameters and mode shape.  

A) Modal Parameters. If the baseband result is compared to the BSFA result for the 1320 
Hz mode it is obvious that the baseband result would indicate that the mode is much more 
highly damped than it actually is. The second small mode (1350 Hz) would not even be 
found, and the 1400 Hz mode would also have the wrong damping. Close inspection also 
shows that the estimate of the resonance frequency for the 1320 Hz mode would have 
significant error.  

B) Mode Shape. Any technique for estimating the mode shape coefficients (e.g., 
quadrature response, circle fitting, differencing, least squares, etc.) would clearly be in error 
since it is apparent that the BSFA result shows a quadrature response at least three times 
greater than the baseband result.  

Although the proceeding example presented a case where the use of BSFA was a necessity, 
it is very easy for the engineer to be misled into believing he has made a measurement of 
adequate resolution when in fact he has not. The following concluding example illustrates 
this point and presents the estimates of the modal parameters for each case.  

A disc brake rotor was tested using an electrodynamic shaker and pure random noise as a 
stimulus. A load cell was used to measure the input force and an accelerometer mounted 
near the driving point was used to measure the response. The baseband measurement had 
a resolution of 9.76 Hz. As can be seen in Figure 18A, the two major modes at about 1360 
Hz and 1500 Hz appear to be well defined. An expanded display (no increased resolution) 
from 1275 Hz to 1625 Hz clearly shows the two large modes and a much smaller mode at 
about 1580 Hz.  



The rotor was retested using BSFA and the two sets of data are compared in Figure 18. This 
data clearly shows the value of BSFA. The BSFA data provides increased definition of the 
modal resonances, as can be seen by comparing the baseband and BSFA results. The 
validity of each result is reflected in the respective coherence functions. The baseband 
transfer function contains inaccuracies due to the Hanning effect, as well as inadequate 
resolution. The coherence for the BSFA measurement is unity in the vicinity of all three 
modal resonances, indicating the quality of the transfer function measurement. Further 
proof of the increased modal definition is shown in the BSFA Nyquist plot (co versus quad). 
Here, all three modes are clearly discernible and form almost perfect circles, indicating an 
excellent measurement, almost totally free of distortion. In the baseband result, only three 
or four data points were available in the vicinity of each resonance, whereas in the BSFA 
data many more points are used.  

The modal parameters for all three modes were identified from the baseband and BSFA data 
and the results are shown in Table III. Comparison of results emphasizes the need for BSFA 
when accurate modal parameters are desired.  

In summary, no parameter identification techniques are capable of accurately identifying 
modal parameters or mode shapes when the frequency resolution of the measurement is 
not adequate.  

Summary  

We have seen that frequency response functions can be used for identifying the modes of 
vibration of an elastic structure and that the accurate measurement of the frequency 
response functions is the most important factor affecting the estimates of the modal 
parameters.  

Pure random, pseudo random, periodic random, swept  



 

sine, and transient techniques for baseband Fourier analysis were discussed. All types of 
stimuli, except for pure random, gave excellent results when used for testing a linear 
system. The pure random result contained some error because its nonperiodicity in the 



measurement window required that Hanning be used on the input and response waveforms, 
resulting in some distortion of the transfer function.  

For systems with distortion, periodic random offers significant advantages over the other 
types of stimuli. It is best able to measure the linear response of distorted systems. This 
means that modal parameters extracted from transfer functions measured with periodic 
random will be more accurate. None of the techniques discussed are capable  

 

of compensating for inadequate frequency resolution. Band Selectable Fourier Analysis was 
introduced as a means for arbitrarily increasing the frequency resolution of the frequency 
response measurement by more than 100 times over standard baseband measurements. 
BSFA's increased resolution provides the best possible means for making measurements for 
the identification of modal parameters and, in a great number of practical problems, is the 
only feasible approach.  
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