EFFECTIVE MEASUREMENTS FOR STRUCTURAL DYNAMICS TESTING
Part 11
By Kenneth A. Ramsey

Digital Fourier analyzers have opened a new era in structural dynamics testing. The ability
of these systems to measure a set of structural transfer functions quickly and accurately
and then operate on them to extract modal parameters is having a significant impact on the
product design and development cycle. In order to use these powerful new tools effectively,
it is necessary to have a basic understanding of the concepts which are employed. In Part |
of this article, the structural dynamics model was introduced and used for presenting the
basic mathematics relative to modal analysis and the representation of modal parameters in
the Laplace domain. Part | concluded with a section describing the basic theoretical concepts
relative to measuring transfer and coherence functions with a digital Fourier analyzer.

Part Il presents an introductory discussion of several techniques for measuring structural
transfer functions with a Fourier analyzer. Broadband testing techniques are stressed and
digital techniques for identifying closely coupled modes via increased frequency resolution
are introduced.

Certainly one of the most important areas of structural dynamics testing is the use of
modern experimental techniques for modal analysis. The development of analytical and
experimental methods for identifying modal parameters with digital Fourier analyzers has
had a dramatic impact on product design in a number of industries. The application of these
new concepts has been instrumental in helping engineers design mechanical structures
which canymore payload, vibrate less, nun quieter, fail less frequently, and generally
behave according to design when operated in a dynamic environment.

Making effective measurements in structural dynamics testing can be a challenging task for
the engineer who is new to the area of digital signal analysis. These powerful new signal
analysis systems represent a significant departure from traditional analog instrumentation in
teens of theory and usage. By their very nature, digital techniques require that all
measurements be discrete and of finite duration, as opposed to continuous duration in the
analog domain. However, the fact that digital Fourier analyzers utilize a digital processor
enables them to offer capabilities to the testing laboratory that were unheard of only a few
years ago.

Modal analysis, an important part of the overall structural dynamics problem, is one area
that has benefited tremnendously from the advent of digital Fourier analysis. The intent of
this article is to present some of the important topics relative to understanding and making
effective measurements for use in modal analysis. The engineer using these techniques
needs to have a basic understanding of the theory on which the identification of modal
parameters is based, in order to make a measurement which contains the necessary
information for parameter extraction.

Part | of this article introduced the structural dynamics model and how it is represented in
the Laplace or sdomain. The Laplace formulation was used, because it provides a convenient
model to present the definition of modal parameters and the mathematics for describing a
mode of vibration.



In this part, we will diverge from the mathematics and present some practical means for
measuring structural transfer functions for the purpose of modal parameter identification.
Unfortunately, the scope of this article does not penmit a thorough explanation of many
factors which are important to the measurement process, such as sampling, aliasing, and
leakage.® Instead, we will concentrate more on different types of excitation and the
importance of adequate frequency resolution.

Identification of Modal Parameters: a Short Review

In Part I we derived the time, frequency and Laplace or eplane representation of a single-
degreeoffreedom system, which has only one mode of vibration.

The time domain representation is a statement of Newton's second law
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This equation of motion gives the correct time domain response of a vibrating system
consisting of a single mass, spring and damper, when an arbitrary input force is applied.

The transfer function of the singledegreeof freedom system is derived in terms of its eplane
representation by introducing the Laplace transform. The transfer function is defined as the
ratio of the Laplace transform of the output of the system to the Laplace transform of the
input. The compliance transfer function was written as
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Finally, the frequency domain form is found by applying the fact that the Fourier transform
is merely the Laplace transform evaluated along the jw or frequency axis of the complex
Laplace plane. This special case of the transfer function is called the frequency response
function written as,
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Thus, as shown in Figure 1, the motion of a mechanical system can be completely described
as a function of time, frequency, or the Laplace variable, s. Most importantly, all are valid
ways of characterizing a system and the choice is generally dictated by the type of
information that is desired.

Because the behavior of mechanical structures is more easily characterized in the frequency
domain, especially in terms of modes of vibration we will devote our attention to their
frequency domain descriptions.

A mode of vibration (the k™ mode) is completely described by the four Laplace parameters:

I . - .
w,, the natural frequency; T , the modal damping coefficient; and the complex residue

which is expressed as two terms, magnitude and phase. The residues define the mode
shapes for the system. The Fourier transfom is the tool that allows us to transform time
domain signals to the frequncy domain and thus observe the Laplace domain along the
frequency axis. It is possible to show that the transfer function over the entire splane is
completely determined by its values along the jw axis, so the frequency response function
contains all of the necessary information to identify modal parameters.

Digital Fourier analyzers, such as the one shown in Figure 2, have proven to be ideal tools
for measuring structural frequency response functions (transfer functions) quickly and
accurately. Coupling this with the fact that modes of vibration can be identified from
measured frequency response functions by digital parameter identification techniques gives
the testing laboratory an accurate and costeffective means for quickly characterizing a
structure's dynamic behavior by identifying its modes of vibration.?

The remainder of this article will attempt to introduce some of the techniques which are
available for making effective frequency response measurements with digital Fourier
analyzers.

Measuring Structural Frequency Response Functions

The general scheme for measuring frequency response functions with a Fourier analyzer
consists of measuring simultaneously an input and response signal in the time domain,
Fourier transforming the signals, and then forming the system transfer function by dividing



the transformed response by the transformed input. This digital process enjoys many
benefits over traditional analog techniques in terms of speed, accuracy and postprocessing
capability.® One of the most important features of Fourier analyzers is their ability to form
accurate transfer functions with a variety of excitation methods. This is in contrast to
traditional analog techniques which utilize sinusoidal excitation. Other types of excitation
can provide faster measurements
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and a more accurate simulation of the type of excitation which the structure may actually
experience in service. The only requirement on excitation functions with a digital Fourier
analyzer is that they contain energy at the frequencies to be measured.

The following sections will discuss three popular methods for exciting a structure for the
purpose of measuring transfer functions; they are, random, transient, and sinusoidal
excitation. To begin with, we will restrict our discussion to baseband measurements; i.e.,
measurements made from dc (zero frequency) to some Fnax (mMmaximum frequency). The
procedures for using these broadband stimuli (except transient) are all very similar. They
are typically used to drive a shaker which, in turn, excites the mechanical structure under
test. The general process is illustrated in Figure 3.

Random Excitation Techniques



In this section, three types of broadband random excitation which can be used for making
frequency response measurements are discussed. Each one possesses a distinct set of
characteristics which should be understood in order to use them effectively. The three types
are: (1) pure random, (2) pseudo random, and (3) periodic random.

Typically, pure random signals are generated by an external signal generator, whereas
pseudo random and periodic random are generated by the analyzer's processor and output
to the structure via a digitaltoanalog converter, as shown in Figure 3. Figure 4 illustrates
each type of random signal.

Pure Random

Pure random excitation typically has a Gaussian distribution and is characterized by the fact
that it is in no way periodic, i.e., does not repeat. Typically, the output of an independent
signal generator may be passed through a bandpass filter in order to concentrate energy in
the band of interest. Generally, the signal spectrum will be flat except for the filter rolloff
and, hence, only the overall level is easily controlled.

One disadvantage of this approach is that, although the shaker is being driven with a flat
input spectrum, the structure is being excited by a force with a different spectrum due to
the impedance mismatch between the structure and shaker head. This means that the force
spectrum is not easily controlled and the structure may not be forced in the optimum
manner. Since it is difficult to shape the spectrum because it is not generally controlled by
the computer, some form of closedloop force control system would ideally he used.
Fortunately, in most cases, the problem is not important enough to warrant this effort.

A more serious drawback of pure random excitation is that the measured input and
response signals are not periodic in the measurement time window of the analyzer. A key
assumption of digital Fourier analysis is that the time waveforms he exactly periodic in the
observation window. If this condition is not met, the corresponding frequency spectrum will
contain socalled "leakage" due to the nature of the discrete Fourier transform; that is,
energy from the nonperiodic parts of the signal will leak” into the periodic parts of the
spectrum, thus giving a less accurate result.

In digital signal analyzers, nonperiodic time domain data is typically multiplied by a
weighting function such as a Hanning window to help reduce the leakage caused by non-
periodic data and a standard rectangular window.

MG ITL T AHILGG LI |
EleraLATLR
PR WG
thfmi T

Figure 3 — The generef {est setup for paking frequenoy responae
mensurerments with o divital Foenier awelpzer and an elecere
:,funnrru'u ey,




T F4) T o

oo WM A . . . . .
AR Y wu‘_‘ » + + S
e e
“1‘“ L=l | N 3

Figure 4 — Compurizon of pure rundom, psesde rundom, ond

perindfic random aelie, Fure raadom (5 mever perodic. Preudo

random {3 exactly pesodic eoery T sevencs. Perindic roncom is o

crambiven e o bl e v pretdo rendon sagnal that i chasged
rl:"' EETH #"hi'l"“dﬂli.' SLE TR,

When a nonperiodic time waveform is multiplied by this window, the values of the signal in
the measurement window more closely satisfy the requirements of a periodic signal. The
result is that leakage in the spectrum of a signal which has been multiplied by a Hanning
window is greatly reduced.

However, multiplication of two time waveforms, i.e., the nonperiodic signal and the Hanning
window, is equivalent to the convolution of their respective Fourier transforms (recall that
multiplication in one domain is exactly equivalent to convolution in the other domain).
Hence, although multiplication of a nonperiodic signal by a Hanning window reduces
leakage, the spectrum of the signal is still distorted due to the convolution with the Fourier
transform of the Hanning window. Figure 5 illustrates these points for a simple sinewave.

With a pure random signal, each sampled record of data T seconds long is different from the
preceeding and following records. (Figure 4). This gives rise to the single most important
advantage of using a pure random signal for transfer function measurement. Successive
records of frequency domain data can be ensemble averaged together to remove nonlinear
effects, noise, and distortion from the measurement. As more and more averages are taken,
all of these components of a structure's motion will average toward an expected value of
zero in the frequency domain data. Thus, a much better measure of the linear least squares
estimate of the response of the structure can be obtained.?
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This is especially important because digital parameter estimation schemes are all based on
linear models and the premise that the structure behaves in a linear manner. Measurements
that contain distortion will be more difficult to handle if the modal parameter identification
techniques used are based upon a linear model of the structure’'s motion.

PseudoRandom

In order to avoid the leakage effects of a nonperiodic signal, a waveform known as pseudo
random is commonly used. This type of excitation is easy to implement with a digital Fourier
analyzer and its digitaltoanalog (DAC) converter. The most commonly used pseudo random
signal is referred to as "zerovariance random noise."” It has uniform spectral density and
random phase. The signal is generated in the computer and repeatedly output to the shaker
through the DAC every T seconds (Figure 4). The length of the pseudo random record is
thus exactly the same as the analyzer's measurement record length (T seconds), and is
thus exactly periodic in the measurement window.



Because the signal generation process is controlled by the analyzer's computer, any signal
which can be described digitally can be output through the DAC. The desired output signal is
generated by specifying the amplitude spectrum in the frequency domain; the phase
spectrum is normally random. The spectrum is then

Fourier transformed to the time domain and output through the DAC. Therefore, it is
relatively easy to alter the stimulus spectrum to account for the exciter system
characteristics.

In general, besides providing leakagefree measurements, a technique using pseudo random
noise can often provide the fastest means for making a statistically accurate transfer
function measurement when using a random stimulus. This proves to be the case when the
measurement is relatively free of extraneous noise and the system behaves linearly,
because the same signal is output repeatedly and large numbers of averages offer no
significant advantages other than the reduction of extraneous noise.

The most serious disadvantage of this type of signal is that because it always repeats with
every measurement record taken, nonlinearities, distortion, and periodicities due to rattling
or loose components on the structure cannot be removed from the measurement by
ensemble averaging, since they are excited equally every time the pseudo random record is
output.

Periodic Random

Periodic random waveforms combine the best features of pure random and pseudo random,
but without the disadvantages; that is, it satisfies the conditions for a periodic signal, yet
changes with time so that it excites the structure in a truly random manner.

The process begins by outputting a pseudo random signal from the DAC to the exciter. After
the transient part of the excitation has died out and the structure is vibrating in its steady-
state condition, a measurement is taken; i.e., input, output, and cross power spectrums are
formed. Then, instead of continuing to output the same signal again, a different
uncorrelated pseudo random signal is synthesized and output (refer again to Figure 4). This
new signal excites the structure in a new steadystate manner and another measurement is
made.

When the power spectrums of these and many other records are averaged together, non-
linearities and distortion components are removed from the transfer function estimate.
Thus, the ability to use a periodic random signal eliminates leakage problems and ensemble
averaging is now useful for removing distortion because the structure is subjected to a
different excitation before each measurement.

The only drawback to this approach is that it is not as fast as pseudo random or pure
random, since the transient part of the structure's response must be allowed to die out
before a new ensemble average can be made. The time required to obtain a comparable
number of averages may be anywhere from 2 to 3 times as long. Still, in many practical
cases where a baseband measurement is appropriate, periodic random provides the best
solution, in spite of the increased measurement time.

Sinusoldal Testing



Until the advent of the Fourier analyzer, the measurement of transfer functions was
accomplished almost exclusively through the use of sweptsine testing. With this method, a
controlled sinusoidal force is input to the structure, and the ratio of output response to the
input force versus frequency is plotted. Although sine testing was necessitated by analog
instrumentation, it is certainly not limited to the analog domain. Sinusoidally measured
transfer functions can be digitized and processed with the Fourier analyzer or can be
measured directly, as we will explain here.

In general, swept sinusoidal excitation with analog instrumentation has several
disadvantages which severely limit its effectiveness:

1) Using analog techniques, the low frequency range is often limited to several Hertz.
2) The data acquisition time can be long.

3) The dynamic range of the analog instrumentation limits the dynamic range of the
transfer function measurements.

4) Accuracy is often difficult to maintain.

5) Nonlinearities and distortion are not easily coped with.

However, sweptsine testing does offer some advantages over other testing forms:

1) Large amounts of energy can be input to the structure at each particular frequency.
2) The excitation force can be controlled accurately.

Being able to excite a structure with large amounts of energy provides at least two benefits.
First, it results in relatively high signaltonoise ratios which aid in determining transfer
function accuracy and, secondly, it allows the study of structural nonlinearities at any
specific frequency, provided the sweep frequency can be manually controlled.

Sine testing can become very slow, depending upon the frequency range of interest and the
sweep rate required to adequately define modal resonances. Averaging is accomplished in
the time domain and is a function of the sweep rate.

A sinusoidal stimulus can be utilized in conjunction with a digital Fourier Analyzer in many
different ways. However, the fastest and most popular method utilizes a type of signal
referred to as a "chirp.” A chirp is a logarithmically swept sinewave that is periodic in the
analyzer's measurement window, T. The swept sine is generated in the computer and
output through the DAC every T seconds. Figure I0G shows a chirp signal. The important
advantage of this type of signal is that it is sinusoidal and has a good peaktorms ratio. This
is an important consideration in obtaining the maximum accuracy and dynamic range from
the signal conditioning electronics which comprise part of the test setup. Since the signal is
periodic, leakage is not a problem. However, the chirp suffers the same disadvantage as a
pseudo random stimulus; that is, its inability to average out nonlinear effects and distortion.

Any number of alternate schemes for using sinusoidal excitation can be implemented on a
Fourier analyzer. However, they will not be discussed here because they offer few, if any,
advantages over the chirp and, in fact, generally serve to make the measurement process
more tedious and lengthy.

Transient Testing



As mentioned earlier, the transfer function of a system can be determined using virtually
any physically realizable input, the only criteria being that some input signal energy exists
at all frequencies of interest. However, before the advent of minicomputerbased Fourier
analyzers, it was not practical to determine the Fourier transform of experimentally
generated input and response signals unless they were purely sinusoidal.

These digital analyzers, by virtue of the fast Fourier transform, have allowed transient
testing techniques to become widely used. There are two basic types of transient tests: (1)
Impact, and (2) Step Relaxation.

Impact Testing

A very fast method of performing transient tests is to use a handheld hammer with a load
cell mounted to it to impact the structure. The load cell measures the input force and an
accelerometer mounted on the structure measures the response. The process of measuring
a set of transfer functions by mounting a stationary response transducer (accelerometer)
and moving the input force around is equivalent to attaching a mechanical exciter to the
struck ture and moving the response transducer from point to point. In the former case, we
are meazsuring a row of the transfer matrix whereas in the latter we are measuring a
column.

In general, impact testing enjoys several important advantages:

1) No elaborate fixturing is required to hold the structure under test.

2) No electromechanical exciters are required.

3) The method is extremely fast-often as much as 100 times as fast as an analog sweptsine
test.

However, this method also has drawbacks. The most serious is that the power spectrum of
the input force is not as easily controlled as it is when a mechanical shaker is used. This
causes nonlinearities to be excited and can result in some variablity between successive
measurements. This is a direct consequence of the shape and amplitude of the input force
signal.

The impact force can be altered by using a softer or harder hammer head. This, in turn,
alters the corresponding power spectrum. In general, the wider the width of the force
impulse, the lower the frequency range of excitation. Therefore, impulse testing is a matter
of tradeoffs. A hammer with a hard head can be used to excite higher frequency modes,
whereas a softer head can be used to concentrate more energy at lower frequencies. These
two cases are illustrated in Figures 6 and 7.

Since the total energy supplied by an impulse is distributed over a broad frequency range,
the actual excitation
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energy density is often quite small. This presents a problem when testing heavily damped
structures, because the transfer function estimate will suffer due to the poor signaltonoise
ratio of the measurement. Ensemble averaging, which can be used with this method, will
greatly help the problem of poor signaltonoise ratios.

Another major problem is that of frequency resolution. Adequate frequency resolution is an
absolute necessity in making good structural transfer function measurements. The
fundamental nature of a transient response signal places a practical limitation on the
resolution obtainable. In order to obtain good frequency resolution for quantifying very
lightly damped resonances, a large number of digital data points must be used to represent
the signal. This is another way of saying that the Fourier transform size must be large, since

Af = maximum frequency of interest _

!
%2 Fourier transform size T

Thus, as the response signal decays to zero, its signalto-ratio becomes smaller and smaller.
If it has decayed to a small value before a data record is completely filled, the Fourier
transform will be operating mostly on noise, therefore causing uncertainties in the transfer
function measurement. Obviously, the problem becomes more acute as higher frequency
resolutions are needed and as more heavily damped structures are tested. Figure 8
illustrates this case for a simple singledegreeoffreedom system. In essence, frequency
resolution and damping form the practical limitations for impulse testing with baseband (dc
to Fnax) Fourier analysis.

Since a transient signal may or may not decay to zero within the measurement window,
windowing can be a serious problem in many cases, especially when the damping is light
and the structure tends to vibrate for a long fume. In these instances, the standard
rectangular window is unsatisfactory because of the severe leakage. Digital Fourier



analyzers allow the user to employ a variety of different windows which will alleviate the
problem. Typically, a Hanning window would be unsuitable because it destroys data at the
first of the record-the most important part of a transient signal. The exponential window can
be used to preserve the important information in the waveform while at the same time
forcing the signal to become periodic. It must, however, be applied with care, especially
when modes are closely spaced, for exponential smoothing can smear modes together so
that they are no longer discernible as separate modes. Reference 4 explains this in more
detail.

In spite of these problems, the value of impact testing for modal analysis cannot be
overstressed.
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It provides a quick means for troubleshooting vibration problems. For a great many
structures an impact can suitably excite the structure such that excellent transfer function
measurements can be made. The secret of its success rest with the user and his
understanding of the physics of the situation and the basics of digital signal processing.

Step Relaxation Testing

Step relaxation is another form of transient testing which utilizes the same type of signal
processing techniques as the impact test. In this method, an inextensible, lightweight cable
is attached to the structure and used to pre.load the structure to some acceptable force
level. The structure "relaxes™ with a force step when the cable is severed, and the transient
response of the structure, as well as the transient force input, are recorded.

Although this type of excitation is not nearly as convenient to use as the impulse method, it
is capable of putting a great deal more energy into the structure in the low frequency range.
It is also adaptable to structures which are too fragile or too heavy to be tested with the
handheld hammer described earlier. Obviously, step relaxation testing will also require a
more complicated test setup than the impulse method but the actual data acquisition time is
the same.

Testing a Simple Mechanical System



A singledegreeoffreedom system was tested with each type of excitation method previously
discussed. Besides measuring the linear characteristics of the system with each excitation
type, gross nonlinearity was simulated by clipping approximately onethird of the output
signal. This condition simulates a "hard stop" in an otherwise unconstrained system. The
intent ot these tests was to show how certain forms of excitation can be used to measure
the linear characteristics of a system with a large amount of distortion. This is extremely
important to the engineer who is interested in identifying modal parameters.

Figure 9 illustrates the form of each type of stimulus and its power spectrum after fifteen
ensemble averages. Notice that the input power spectrums for both the pure random and
periodic random cases have more variance than the others. This is because each ensemble
average consisted of a new and uncorrelated signal for these two stimuli. The pseudo
random and swept sine (chirp) signals were controlled by the analyzer's digitaltoanalog
converter and each ensemble average was in fact the same signal, thus resulting in zero
variance. In this test, the transient signal was also controlled by the DAC to obtain recordto-
record repeatability and resulting zero variance. In all cases, the notching in the power
spectrums is due to the impedance mismatch between the structure and the shaker. A final
interesting note is that all spectrums except the swept sine are flat out to the cutoff
frequency. The rolloff of the swept sine spectrum is due to the logarithmic sweep rate. Thus,
the spectrum has reduced energy density as the frequency is increased.

Recall that in Part | we discussed the use of the coherence function to assess the quality of
the transfer function measurement. In Figure 10, the results obtained from testing the
singledegreeoffreedom system with and without distortion are shown. In Figures 10A and
10B, the cases for pure random excitation, notice that the coherence is noticeably different
from unity in the vicinity of the resonance. This is due to the nonperiodicity of the signals
and the
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fact that Hanning windowing was used to reduce what would have otherwise been even
more severe leakage. The leakage effect is much more sensitive here, due to the sharpness
of the resonance, i.e., the rate of change of the function. Although the effect is certainly
present throughout the rest of the band, the relatively small changes in response level



between data points away from the resonance will obviously tend to minimize the leakage
from adjacent channels. Although any number of different windowing functions could have
been used, the phenomenon would still exist.

Figures 10C10J show the results of testing the system with the other excitation forms. In all
figures showing the distorted case, the best fit of a linear model to the measured data is
also shown. The coherence is almost exactly unity for the linear cases shown in Figures I0C.
E, G and I. This is because all are ideally leakagefree measurements because they are
periodic in the analyzer's measurement window. For the cases with distortion, the latter
three show very good coherence even though the system output was highly distorted. This
apparently good value of coherence is due to the nature of the zero-variance periodic
signals used as stimuli. In cases I0B and 10D, the measurements are truly random from
average to average and the coherence is more indicative of the quality of the measurement.
The low coherence values at the higher frequencies are primarily a result of the poor signal
energy available. The conclusion is that the coherence function can be misleading if one
does not understand the measurement situation.
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Even though the system was highly distorted, it is apparent that the pure random and
periodic random stimuli provided the best means for transfer function measurements, as
seen in Figures I0B and I0OD. Again, this is due to their ability to effectively use ensemble
averaging to remove the distortion components from the measurement. The distortion
cannot be removed using the other types of periodic stimuli and this is evident in Figures



IOF, H and J. The results obtained from fitting a liner model to the measured data are given
in Table I.

In all cases where the linear motion was measured, each type of excitation gave excellent
results, as indeed they should. The one item worthy of mention is the estimate of damping
with the pure random result. In this case, the value is about 7% higher than the correct
value. This error is due to the windowing effect on the data. In this test, a Hanning window
was used. However, any number of other windows could have been used and error would
still be present. Further evidence of the Hanning effect on the data is shown by the error
between the linear model and the measured data.

Of considerable importance is the data for the simulated distortion. The primary conclusion
that can be drawn from these data is that the periodic random stimulus provides a good
means for measuring the linear response of a linear system and is clearly superior to a pure
random stimulus. It is also the best possible excitation for measuring the linear response of
a system with distortion. Evidence of this is seen in the quality of the parameter estimates
in Table I and the relative error (the error index between the ideal linear model and the
measured data). The principal characteristics of each type of excitation are summarized in
Table I1.

Increasing Frequency Resolution

Certainly the single most important factor affecting the accuracy of modal parameters is the
accuracy of the transfer function measurements. And, in general, frequency resolution is the
most important parameter in the measurement process. In other words, it is simply not
possible to extract the correct values of the modal parameters when there is inadequate
information available to process. Modern curve fitting algorithms are highly dependent on
adequate resolution in order to give correct parameter estimates, including mode shapes.

In this section we will introduce Band Selectable Fourier Analysis (BSFA), the socalled
"zoom" transfonn. BSFA is a measurement technique in which the Fourier transform is
performed over a frequency band whose lower and upper limits are independently
selectable. This is in contrast to standard baseband Fourier analysis, which is always
computed over a frequency range from zero frequency to some maximum frequency, Fpyax-
From a practical viewpoint, in many complex structures, modal density is so great, and
modal coupling (or overlap) so strong, that increased frequency resolution over that
obtainable with baseband techniques is an absolute necessity for achieving reliable results.

In the past, many digital Fourier Analyzers have been limited to baseband spectral analysis;
that is, the frequency band under analysis always extends from dc to some maximum
frequency. With the Fourier transform, the available number of discrete frequency lines
(typically 1024 or 512) are equally spaced over the analysis band. This, in turn, causes the

. : &f = FrnggiNIZ), 3 . .
available frequency resolution to be, . 7. . u...ut., Where N is the Fourier transform block

size, i.e., the number of samples describing the realtime function. There are N/2 complex
(magnitude and phase) samples in the frequency domain. Thus, F,ax and the block size, N,
determine the maximum obtainable frequency resolution.

The problem with baseband Fourier analysis is that, to increase the frequency resolution for
a given value of F.x the number of lines in the spectrum (i.e., the block size) must
increase. There are two important reasons why this is an inefficient way to increase the
frequency resolution:



1) As the block size increases, the processing time required to perform the Fourier
transform increases.

2) Because of available computer memory sizes, the block size is limited to a relatively
small number of samples(typically a maximum of 4096).

More recently, however, the implementation of BSFA has made it possible to perform
Fourier analysis over a frequency band whose upper and lower frequency limits are
independently selectable. BSFA provides this increased frequency resolution without
increasing the number of spectral lines in the computer.

BSFA operates on incoming time domain data to the analyzer's analogtodigital converter or
time domain data that has previously been recorded on a digital mass storage device. BSFA
digitally filters the time domain data and stores only the filtered data in memory. The
filtered data corresponds to the frequency band of interest as specified by the user. The
procedure is completed by performing a complex Fourier transform on the filtered data.

Of fundamental importance is the fact that the laws of nature and digital signal processing
also apply to the BSFA situation. Since the frequency resolution is always equal to the
reciprocal of the observation time of the measurement, delta f = 1/T, the digital filters must
process T seconds of data to obtain a frequency resolution of 1/T in the analysis band.

Af = F g NV

Whereas in baseband Fourier analysis the maximum resolution is always . : . . ....t.the
resolution with BSFA is wa?i}’{&'nﬂ} where BW is the independently selectable bandwidth of

the BSFA measurement. Therefore, by restricting our attention to a narrow region of
interest below F.,.x and concentrating the entire power of the Fourier transform in this
interval, an increase in frequency resolution equal to F,,x/BW can be obtained (Figure 11).

The other significant advantage of BSFA is its ability to increase the dynamic range of the
measurement to 90 dB or more in many cases. The increased dynamic range of BSFA is a
direct result of the extremely sharp rolloff and outof-band rejection of the preprocessing
digital filters and of the increased frequency resolution which reduces the effect of the white
guantizing noise of the analyzer's analog-todigital converter.® Certain types of BSFA filters
can provide more than 90 dB of outofband rejection relative to a full scale inband spectral
line, a characteristic which is not matched by more traditional analog range translators (see
Figure 12).

The simple singledegreeoffreedom system which was tested with the various excitation
types was also tested with BSFA using pure random excitation We saw that in the baseband
case, pure random was the least desirable signal because of the associated leakage and the
resulting distortion of the transfer function waveform introduced by the Hanning window. By
using BSFA, leakage is no longer an important source of error because of the great increase
in the number of spectral lines used to describe the system. Figure 13 shows the coherence
and transfer function between 524.6 Hz and 579.6 Hz with a resolution of 0.269 Hz, an
increase of more than 18 over the baseband result. Note that the coherence is almost
exactly unity, indicating the
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absence of any error due to leakage, and confirming the quality of the BSFA measurement.
As shown in Table I, the use of BSFA eliminates the error caused by the leakage in the
baseband measurement.



A Practical Problem. To illustrate the importance of BSFA, a mechanical structure was tested
and modes in the area of 1225 Hz to 1525 Hz were to be investigated. Figure 14 is a typical
baseband (dcFnax) transfer function measurement. It was taken with the following
parameters:
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Pure random noise was used to excite the structure through an electrodynamic shaker.

The Inadequacy of the Baseband Measurement. Note that two modes are clearly visible
between 1225 Hz and 1525 Hz. This same measurement is shown in rectangular or co/quad
form in Figure 15. Again, by examining the quadrature response, the two modes are seen,
However, there is also a slight inflection in the response between these two modes which



indicates that yet a third mode may be present. But there is insufficient frequency resolution
to adequately define the mode.

Returning to Figure 15, a partial display of the region between 1225 and 1525 Hz was
made. The expanded quadrature display is shown in Figure 16. Realize that this represents
no increase in frequency resolution, only an expansion of the plot. Clearly, only two modes
were found.

Accurate Measurements with BSFA. In order to accurately define the modes in this
region, the structure was retested using Band Selectable Fourier Analysis (BSFA). All 512
lines of spectral resolution were placed in a band from 1225 to 1525 Hz, resulting in a
resolution of 0.610 Hz instead of 9.76 Hz, as in the baseband measurement. The quadrature
response attained with the BSFA is also shown in Figure 16 for comparative purposes. Note
that three modes are now clearly visible. The small (third) mode of approximately 1350 Hz
is now well defined, whereas it was not even apparent before. In addition, the magnitude of
the first mode at 1320 Hz is seen to be at least three times greater in magnitude than the
result indicated by the baseband measurement. The corresponding results in log form are
shown in Figure 17. This BSFA result was obtained by using only a 16:1 resolution
enhancement. Enhancements of more than 100:1 are possible with BSFA.

Implications of Frequency Resolution in Determining Modal Parameters and Mode
Shapes. Referring again to Figure 15, we can clearly see the necessity of using adequate
frequency resolution for making a particular measurement. In addition, it is important to
understand how the baseband result would lead to an incorrect answer in terms of modal
parameters and mode shape.

A) Modal Parameters. If the baseband result is compared to the BSFA result for the 1320
Hz mode it is obvious that the baseband result would indicate that the mode is much more
highly damped than it actually is. The second small mode (1350 Hz) would not even be
found, and the 1400 Hz mode would also have the wrong damping. Close inspection also
shows that the estimate of the resonance frequency for the 1320 Hz mode would have
significant error.

B) Mode Shape. Any technique for estimating the mode shape coefficients (e.g.,
quadrature response, circle fitting, differencing, least squares, etc.) would clearly be in error
since it is apparent that the BSFA result shows a quadrature response at least three times
greater than the baseband result.

Although the proceeding example presented a case where the use of BSFA was a necessity,
it is very easy for the engineer to be misled into believing he has made a measurement of
adequate resolution when in fact he has not. The following concluding example illustrates
this point and presents the estimates of the modal parameters for each case.

A disc brake rotor was tested using an electrodynamic shaker and pure random noise as a
stimulus. A load cell was used to measure the input force and an accelerometer mounted
near the driving point was used to measure the response. The baseband measurement had
a resolution of 9.76 Hz. As can be seen in Figure 18A, the two major modes at about 1360
Hz and 1500 Hz appear to be well defined. An expanded display (no increased resolution)
from 1275 Hz to 1625 Hz clearly shows the two large modes and a much smaller mode at
about 1580 Hz.



The rotor was retested using BSFA and the two sets of data are compared in Figure 18. This
data clearly shows the value of BSFA. The BSFA data provides increased definition of the
modal resonances, as can be seen by comparing the baseband and BSFA results. The
validity of each result is reflected in the respective coherence functions. The baseband
transfer function contains inaccuracies due to the Hanning effect, as well as inadequate
resolution. The coherence for the BSFA measurement is unity in the vicinity of all three
modal resonances, indicating the quality of the transfer function measurement. Further
proof of the increased modal definition is shown in the BSFA Nyquist plot (co versus quad).
Here, all three modes are clearly discernible and form almost perfect circles, indicating an
excellent measurement, almost totally free of distortion. In the baseband result, only three
or four data points were available in the vicinity of each resonance, whereas in the BSFA
data many more points are used.

The modal parameters for all three modes were identified from the baseband and BSFA data
and the results are shown in Table I1l. Comparison of results emphasizes the need for BSFA
when accurate modal parameters are desired.

In summary, no parameter identification techniques are capable of accurately identifying
modal parameters or mode shapes when the frequency resolution of the measurement is
not adequate.

Summary

We have seen that frequency response functions can be used for identifying the modes of
vibration of an elastic structure and that the accurate measurement of the frequency
response functions is the most important factor affecting the estimates of the modal
parameters.

Pure random, pseudo random, periodic random, swept
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sine, and transient techniques for baseband Fourier analysis were discussed. All types of
stimuli, except for pure random, gave excellent results when used for testing a linear
system. The pure random result contained some error because its nonperiodicity in the



measurement window required that Hanning be used on the input and response waveforms,
resulting in some distortion of the transfer function.

For systems with distortion, periodic random offers significant advantages over the other
types of stimuli. It is best able to measure the linear response of distorted systems. This
means that modal parameters extracted from transfer functions measured with periodic

random will be more accurate. None of the techniques discussed are capable

Tuble MI — Campurizon of model pamimeter test reslts,

Hasehand Results, Afw TES Hz
Mode Freguency, Hz  Damping, %  Amplitude  Phase

1 135994 0773 183.51 350.3
2 1500 52 0.7563 483,30 111
3 1584.33 0271 948 3346.1

BSFA Besulks, Al=009Y6 Hz
Mode  Frequency, Hr  Damping, %  Amplitade Phase

1 1359,13 (LEED 215 3327
2 1502 6% 0a52 S, 52 Q94
a 1553.50 0.131 11.65 3408
Emor, %, Yeous Baseband
Miode Frequency, Hz Damping Amplitude
1 { 1555 5
2 n 173 L
3 b 1084 0%

of compensating for inadequate frequency resolution. Band Selectable Fourier Analysis was
introduced as a means for arbitrarily increasing the frequency resolution of the frequency
response measurement by more than 100 times over standard baseband measurements.
BSFA's increased resolution provides the best possible means for making measurements for
the identification of modal parameters and, in a great number of practical problems, is the
only feasible approach.
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