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ABSTRACT 

Modal analysis has become a frequently used method for studying the dynamic behavior of 
mechanical structures. This technique is usually presented using parameters which are 
defined by complicated mathematical derivations. Unfortunately, it is difficult for the 
experimentalist to apply these mathematical concepts to the solution of his vibration 
problem. Consequently, modal analysis has become a "black box". technique with frequency 
response measurements as input and mode shapes as the output. To examine this "Black 
box", and in particular mode shape scaling, we present an illustrative example that relates 
both the terminology and mathematical concepts to practical applications.  

INTRODUCTION  

For our example, we will determine the modal parameters of a set of measurements which 
were acquired from the structure shown in Figure 1. To better exemplify an actual modal 
test we will assume that the physical properties of the test structure (eg. mass, stiffness) 
are unknown. Because mode shape scaling is critical to further data analysis (eg. structural 
modification), it will be explained in detail.  

 

Although the structure is a continuous system, we will model it as a system of three discrete 
elements. For simplicity, we will assume the vibratory motion is in the ydirection only. This 
simplifies the model to the three degreeoffreedom system shown in Figure 2.  

 

FREQUENCY RESPONSE MEASUREMENTS  



Because we are modeling the test structure as a threedegreeoffreedom system, nine 
frequency response measurements completely define its dynamic characteristics. For our 
example, we will assume that the frequency response data has already been gathered and 
that the response units are inches and the force units are pounds. Figure 3 is an illustration 
of the force and response transducer positions and Figure 4 is a matrix of the 
measurements acquired from those configurations.  

FREQUENCY AND DAMPING 

We can now extract the modal parameters from the frequency response measurements. The 
frequency and damping must be determined first. We will use a measurement in which the 
peaks are well defined, such as measurement 1y/1y shown in Figure 5.  

The measurement in Figure 5 contains three peaks. These peaks correspond to the three 
modes of the structure. The frequency and damping of each of these modes was found 
using standard curve fitting techniques and are listed in the Table 1.  

Frequency and damping are global properties. This means that they do not vary across the 
structure, and can be estimated from any frequency response measurement taken from the 
structure except those measured at any point where the mode shape has zero amplitude.  

 



 



 

MODE SHAPES 

Now, we will use the amplitude of the peaks to determine the mode shapes. The amplitude 
of the first peak of each measurement in Figure 4 is listed in Figure 6.  

 

Scaling the three columns of the above matrix such that the smallest element of each 
column is equal to one (ie. dividing each element of a column by the smallest element of 
that column), yields the modal vectors shown in Figure 7.  



 

We can also scale the rows in a similar manner and obtain a matrix with the mode shape (1, 
2, 4) in each row. We can see from this scaling exercise that the complete mode shape is 
defined in every column and row. Given this and recalling that the frequency and damping 
can be determined from any measurement, we can conclude that we need only measure 
one row or one column of the frequency response matrix to completely define all the modal 
parameters.  

Now referring to Figure 3, we can describe this property as it relates to a modal test. A 
column of the frequency response matrix contains measurements acquired by fixing the 
location of the input force and moving the response to each test point. Similarly, a row 
contains measurements acquired by fixing the response location and moving the input to 
each test point.  

The ramifications of this property of the frequency response matrix are that we need not 
measure all nine frequency response measurements to obtain the modal parameters. By 
selecting one exciter location and measuring the response at all three points or by fixing the 
response location and exciting the structure at all three points, we can obtain all of the 
structure's modal parameters.  

From this point on we will assume that we only have data for the first column of the 
frequency response matrix. This means that we have taken data with the exciter located at 
mass #1 and the response measured at all three masses. Now let's take a closer look at the 
scaling of the mode shapes.  

The mode shape in Figure 8 is scaled but uncalibrated. This means that it is scaled to a 
convenient format (in this case, the convenience is for ease of reading) but not calibrated to 
the frequency response measurements. This mode shape can be used for plotting or 
animated display.  

The amplitudes in Figure 9 are an unscaled but calibrated mode shape. This means that the 
mode shape values are directly related to the frequency response measurements but are 
not scaled to a convenient format.  



 

For users that require only frequency, damping, and a display of the mode shape, an 
uncalibrated mode shape (ie. Figure 8) is sufficient, regardless of how it is scaled. However, 
for advanced analysis techniques such as structural dynamics modification, the mode shape 
must be calibrated and scaled so that the correct inertial and elastic properties of the 
structure are preserved. In our example, the mode shapes will be calibrated and scaled 
using two techniques.  

MODE SHAPE SCALING  

The first scaling technique is based on an expression which relates the peak values of the 
frequency response measurements to a scaled calibrated mode shape. This expression, 
known as a residue, is related to the frequency response measurements by a term 
proportional to the damping at the natural frequency. The residues were computed from our 
example data using a standard curve fitting method, and those for mode #1 are shown in 
Figure 10.  

 

Scaling the residues such that the smallest element is equal to one (ie. dividing each 
element by the smallest element) yields the same mode shape as that obtained previously 
(See Figure 11). This shows that the unscaled calibrated mode shape can be either the 
amplitudes of the frequency response measurements or the residues.  

The advantage of using the residues is that they provide a convenient way to scale the 
mode shapes while retaining the calibration. If we look closely at the residues we see that 
each one is actually comprised of three values; a calibration constant, and two coefficients 
which provide the scaling. The composition of the residues, for mode 1 of our example, is 
shown in Figure 12.  



 

UNITY MODAL MASS SCALING  

In general, each equation in Figure 12 contains three unknowns. In the third equation, for 
example, M, U1y and U3y are unknown while the residue R1y/1y and the natural frequency wd 
are known. However, if a measurement is taken at a "driving point". (ie. the force and 
response measured at the same location), the coefficients are repeated, thus reducing the 
number of unknowns to two for that particular equation. The driving point which we will use 
in our example is measurement 1y/1y. Figure 13 shows that the first equation has only two 
unknowns, M and U1y.  

 

If we solve for U1y we have the solution in terms of the residue R1y/1y the natural frequency 
wd, and a scaling constant M. Now, if we arbitrarily choose the scaling constant M to be 
unity, then we can solve for U1y. Once U1y is known, the other mode shape coefficients can 
be determined. These coefficients comprise the scaled calibrated mode shape.  

In Figure 13, the scaling constant M is known as the "Modal mass". For the single degreeof-
freedom case, the mode shape coefficient U1y is equal to one (1 ) and the expression for 
modal mass is the actual mass of the structure. Of course, this is a theoretical case and in 
the actual case the value of M is related to how the mode shape is scaled. In our case we 
arbitrarily set the value of M to unity and scale the mode shape accordingly. This technique 
is known as unity modal mass scaling.  

SCALING THE MODE SHAPES USING EFFECTIVE MASS/STIFFNESS 

In the second technique, the mode shape scaling is completely arbitrary. This means that 
the mode shape itself does not contain any calibration information. Rather, a calibration 
constant is computed for a particular measurement and mode. To demonstrate this, we will 
use the mode shape shown in Figure 8. Recall that this mode shape is scaled but not 
calibrated. To calibrate this mode shape we will compute the residue for a particular point 
and tag it to the corresponding degree of freedom.  



The residue for mode #1 of measurement 1y/1y, computed using a standard curve fitting 
method, is 1.592E03 in/lbf. Since we know the relative amplitudes for the rest of the mode 
shape, this residue provides the calibration for the entire mode shape. Therefore, by 
calculating the residue for one test point and tying it to one value of the mode shape, we 
retain the calibration for the entire mode shape. Recall that for the single decree of freedom 
case, the mode shape coefficients in equation 2 are equal to one. Rearranging this reduced 
equation gives the modal mass in terms of the residue and natural frequency only (equation 
3).  

 

Using the relationship, w2 = K/m, together with equation 3 allows us to also represent the 
modal stiffness in terms of the natural frequency and residue (equation 4). Like modal 
mass, the term modal stiffness originated from the single degreeoffreedom model. For the 
multiple degreeoffreedom case these values are the calibration for the mode shape. Some 
users have been able to use this value when approximating a single degreeoffreedom case, 
hence they are also called effective mass and the effective stiffness. This approximation is 
highly dependent on the type of structure being tested and in not normally made.  

SUMMARY 

This parameter estimation example was presented to explain the modal analysis process 
following the acquisition of the frequency response measurements. By closely examining the 
frequency response matrix, we found that not all of the measurements are needed to 
completely define a structure's dynamic characteristics. This property greatly simplifies the 
data acquisition process. It was shown that the frequency and damping could be extracted 
from any measurement in which the mode shape values are nonzero.  

Mode shapes were discussed both in terms of generating a display and using them for 
further data analysis. Two mode shape scaling techniques were described to show that 
mode shape scaling is arbitrary as long as the inertial and elastic properties are preserved. 
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